one-file-projects/heun.py

50 lines
1.1 KiB
Python

# Verfahren von Heun zur numerischen Lösung von Anfangswertaufgaben.
#
#def heun(xk,yk,h,ys):
# xk1 = xk + h
# yk1p = yk + h * ys(xk,yk)
# yk1 = 0.5*(yk+yk1p+h*ys(xk1,yk1p))
# return (xk1,yk1p)
#
#def run_heun(K,h,x0,y0,ys):
# if not isinstance(ys,list): ys = [ys]
# if not isinstance(y0,list): y0 = [y0]
# xk = x0
# yk = y0
# xks = x0
# yks = [ [v] for v in y0 ]
#
# for i in range(K):
# for j in range(len(ys)):
# xk,yk[j] = heun(xk,yk[j],h,ys[i])
# xks.append(xk)
# yks[j].append(yk[j])
#
def run_heun(K,h,x0,y0,ys):
if not isinstance(y0,list): y0 = [y0]
if not isinstance(ys,list): ys = [ys]
xk = x0
yk = y0
xka = 0
yka = [0]*len(yk)
ykp = [0]*len(yk)
xks = [x0]
yks = [ [v] for v in y0 ]
for i in range(K):
xka = xk + h
xks.append(xka)
for j in range(len(ys)):
yka[j] = yk[j] + h * ys[j](xk,*yk)
for j in range(len(ys)):
ykp[j] = 0.5*(yk[j] + yka[j] + h * ys[j](xka,*yka))
yks[j].append(ykp[j])
yk = ykp
xk = xka
return [xks] + yks