vgbc/cpu/decoder.cpp

484 lines
13 KiB
C++

#include <cpu/cpu.h>
#include <misc/panic.h>
#include <memory/mem_device.h>
static inline u16 make_u16(u8 msb, u8 lsb)
{
return (((u16)msb << 8) | (u16)lsb);
}
void Cpu::executeInstruction()
{
u16 currentpc = state.PC;
opcode_t op = readPC8();
int mcycles = 1;
#if 0
printf("@0x%04x: opcode %02X\n",currentpc,op);
#endif
if ((op & 0xC0) == 0x40 && op != 0x76) // LD r, r'
{
u8 tmp;
switch(op & 0x07)
{
case 0x6: tmp = bus->read8(state.HL); break;
default: tmp = state.reg8(op & 0x07); break;
};
switch((op >> 3) & 0x7)
{
case 0x6: bus->write8(state.HL, tmp); break;
default: state.reg8((op >> 3) & 0x7) = tmp; break;
}
}
else if((op & 0xC7) == 0x06) // LD r, n
{
u8 imm = readPC8();
switch((op >> 3) & 0x7)
{
case 0x6: bus->write8(state.HL, imm); break;
default: state.reg8((op >> 3) & 0x7) = imm; break;
}
}
else if((op & 0xC7) == 0x46 && op != 0x76) // LD r, [HL]
{
u8 data = bus->read8(state.HL);
state.reg8((op >> 3) & 0x7) = data;
}
else if((op & 0xC8) == 0x70 && op != 0x76) // LD [HL], r
{
u8 data = state.reg8(op & 0x7);
bus->write8(state.HL, data);
}
else if((op & 0xCF) == 0x01) // LD rr, nn
{
u16 data = readPC16();
state.reg16((op >> 4) & 0x3) = data;
mcycles = 3;
}
else if((op & 0xCF) == 0xC5) // PUSH rr
{
u16 data;
switch((op >> 4) & 0x3)
{
case 0x3: data = state.getAF(); break;
default: data = state.reg16((op >> 4) & 0x3);
}
pushStack16(data);
mcycles = 4;
}
else if((op & 0xCF) == 0xC1) // POP rr
{
u16 data = popStack16();
switch((op >> 4) & 0x3)
{
case 0x3: state.setAF(data); break;
default: state.reg16((op >> 4) & 0x3) = data; break;
}
mcycles = 4;
}
else if((op & 0xC0) == 0x80) // ADD, ADC, SUB, ABC, CP, AND, OR, XOR
{
AluOp aluop = (AluOp)((op >> 3) & 0x3);
u8 reg = op & 0x7;
u8 rhs;
switch(reg)
{
case 0x6: rhs = bus->read8(state.HL); mcycles = 2; break;
default: rhs = state.reg8(reg); break;
}
aluop8(aluop, rhs);
}
else if((op & 0xC6) == 0x04) // INC r; INC [HL]; DEC r; DEC [HL];
{
AluOp aluop = (op & 0x1) ? SUB : ADD;
switch((op >> 3) & 0x7)
{
case 0x6:
{
u8 tmp = bus->read8(state.HL);
aluop8(aluop, tmp, 1, tmp, false);
bus->write8(state.HL, tmp);
mcycles = 3;
}
break;
default:
{
u8& reg = state.reg8((op >> 3) & 0x7);
aluop8(aluop, reg, 1, reg, false); break;
}
break;
}
}
else if((op & 0xCF) == 0x03) // INC rr
{
state.reg16((op >> 4) & 0x3) += 1;
mcycles = 2;
}
else if((op & 0xCF) == 0x0B) // INC rr
{
state.reg16((op >> 4) & 0x3) -= 1;
mcycles = 2;
}
else if((op & 0xE7) == 0xC2) // JP cc, nn:
{
u16 nn = readPC16();
if (decodeCond((op >> 3) && 0x3))
{
state.PC = nn;
mcycles = 4;
}
else
{
mcycles = 3;
}
}
else if((op & 0xE7) == 0x20) // JR cc, e
{
s8 e = readPC8();
bool cond;
if (decodeCond((op >> 3) & 0x3))
{
state.PC += e;
mcycles = 3;
}
else
{
mcycles = 2;
}
}
else if((op & 0xE7) == 0xC4) // CALL cc, nn
{
u16 nn = readPC16();
if(decodeCond((op >> 3) & 0x3))
{
doCall(nn);
mcycles = 6;
}
else
{
mcycles = 3;
}
}
else if((op & 0xCF) == 0x09) // ADD HL, rr
{
u16 rhs = state.reg16((op >> 4) & 0x3);
u16 res12 = (state.HL & 0x0FFF) + (rhs & 0x0FFF);
state.halfcarry = (res12 & 0x1000);
u32 res32 = (u32)state.HL + (u32)rhs;
state.carry = (res32 & 0x10000);
state.subtract = false;
mcycles = 2;
}
else if((op & 0xE7) == 0xC0) // RET cc
{
if(decodeCond((op >> 3) & 0x3))
{
doRet();
mcycles = 5;
}
else
{
mcycles = 2;
}
}
else if((op & 0xC7) == 0xC7) // RST
{
u16 rst_addr = op & 0x38;
doCall(rst_addr);
}
else if(op == 0xCB) // PREFIX
{
currentpc = state.PC;
opcode_t prefix_op = readPC8();
#if 0
printf("@0x%04x: CB opcode %02X\n", currentpc, prefix_op);
#endif
u8 reg = prefix_op & 0x7;
u8 data;
switch(reg)
{
case 0x6: data = bus->read8(state.HL); mcycles = 3; break;
default: data = state.reg8(reg); mcycles = 2; break;
}
// For BIT, RES, SET
u8 bit = (prefix_op >> 3) & 0x7;
switch(prefix_op & 0xC0)
{
case 0x00:
switch(prefix_op & 0xF1)
{
case 0x00: // RLC
{
bool msb_set = (data & 0x80);
data = (data << 1) | (msb_set ? 0x1 : 0x0);
state.carry = msb_set;
}
break;
case 0x08: // RRC
{
bool lsb_set = (data & 0x01);
data = (data >> 1) | (lsb_set ? 0x80 : 0x00);
state.carry = lsb_set;
}
break;
case 0x10: // RL
{
bool msb_set = (data & 0x80);
data = (data << 1) | (state.carry ? 0x1 : 0x0);
state.carry = msb_set;
}
break;
case 0x18: // RR
{
bool lsb_set = (data & 0x01) != 0;
data = (data >> 1) | (state.carry ? 0x80 : 0x00);
state.carry = lsb_set;
}
break;
case 0x20: // SLA
state.carry = (data & 0x80);
data = (data << 1);
break;
case 0x28: // SRA
state.carry = (data & 0x01);
data = (data >> 1) | (data & 0x80);
break;
case 0x30: // SWAP
data = ((data >> 4) & 0x0F) | ((data << 4) & 0xF0);
state.carry = false;
break;
case 0x38: // SRL
state.carry = (data & 0x01);
data = (data >> 1);
break;
}
state.halfcarry = false;
state.subtract = false;
state.zero = (data == 0);
break;
case 0x40: // BIT
state.zero = (data & (1 << bit)) == 0;
state.subtract = false;
state.halfcarry = true;
break;
case 0x80: // RES
data &= ~(1 << bit);
break;
case 0xC0: // SET
data |= (1 << bit);
break;
}
// All ops except for BIT write the data back to where it came from
if ((prefix_op & 0xC0) != 0x40)
{
switch(reg)
{
case 0x6: bus->write8(state.HL, data); mcycles = 4; break;
default: state.reg8(reg) = data; break;
}
}
}
else
{
switch(op)
{
case 0x00: break; // NOP
case 0x0A: // Load A, [BC]
state.A = bus->read8(state.BC);
mcycles = 2;
break;
case 0x1A: // Load A, [DE]
state.A = bus->read8(state.DE);
mcycles = 2;
break;
case 0x02: // Load [BC], A
bus->write8(state.BC, state.A);
mcycles = 2;
break;
case 0x12: // Load [DE], A
bus->write8(state.DE, state.A);
mcycles = 2;
break;
case 0x07: // RLCA
{
state.carry = (state.A & 0x80);
state.A = (state.A << 1) | (state.carry ? 0x01 : 0x00);
state.halfcarry = false;
state.subtract = false;
state.zero = false;
}
case 0x17: // RLA
{
bool msb_set = (state.A & 0x80);
state.A = (state.A << 1) | (state.carry ? 0x01 : 0x00);
state.carry = msb_set;
state.halfcarry = false;
state.subtract = false;
state.zero = false;
}
case 0x0F: // RRCA
{
state.carry = (state.A & 0x01);
state.A = (state.A >> 1) | (state.carry ? 0x80 : 0x00);
state.halfcarry = false;
state.subtract = false;
state.zero = false;
}
case 0x1F: // RRA
{
bool lsb_set = (state.A & 0x01);
state.A = (state.A >> 1) | (state.carry ? 0x80 : 0x00);
state.carry = lsb_set;
state.halfcarry = false;
state.subtract = false;
state.zero = false;
}
case 0xFA: // LD A, [nn]
state.A = bus->read8(readPC16());
mcycles = 4;
break;
case 0xEA: // LD [nn], A
bus->write8(readPC16(), state.A);
mcycles = 4;
break;
case 0xF2: // LD A, [0xFF : C]
state.A = bus->read8(make_u16(0xFFu,state.C));
mcycles = 2;
break;
case 0xE2: // LD [0xFF : C], A
bus->write8(make_u16(0xFFu,state.C), state.A);
mcycles = 2;
break;
case 0xF0: // LD A, [0xFF : n]
state.A = bus->read8(make_u16(0xFFu,readPC8()));
mcycles = 3;
break;
case 0xE0: // LD [0xFF : n], A
bus->write8(make_u16(0xFFu,readPC8()), state.A);
mcycles = 3;
break;
case 0x3A: // LD A, [HL-]
state.A = bus->read8(state.HL); state.HL--; mcycles = 2; break;
case 0x2A: // LD A, [HL+]
state.A = bus->read8(state.HL); state.HL++; mcycles = 2; break;
case 0x32: // LD [HL-], A
bus->write8(state.HL, state.A); state.HL--; mcycles = 2; break;
case 0x22: // LD [HL-], A
bus->write8(state.HL, state.A); state.HL++; mcycles = 2; break;
case 0x08: // LD [nn], SP
bus->write16(readPC16(), state.SP); mcycles = 5; break;
case 0xF9: // LD SP, HL
state.SP = state.HL; mcycles = 2; break;
case 0xC6: // ADD n
aluop8(ADD, readPC8()); mcycles = 2; break;
case 0xD6: // SUB n
aluop8(SUB, readPC8()); mcycles = 2; break;
case 0xE6: // AND n
aluop8(AND, readPC8()); mcycles = 2; break;
case 0xF6: // OR n
aluop8(OR, readPC8()); mcycles = 2; break;
case 0xCE: // ADC n
aluop8(ADC, readPC8()); mcycles = 2; break;
case 0xDE: // SBC n
aluop8(SBC, readPC8()); mcycles = 2; break;
case 0xEE: // XOR n
aluop8(XOR, readPC8()); mcycles = 2; break;
case 0xFE: // CP n
aluop8(CP, readPC8()); mcycles = 2; break;
case 0x3F: // CCF complement carry flag
state.carry = !state.carry;
state.subtract = false;
state.halfcarry = false;
break;
case 0x37: // SCF Set carry flag
state.carry = true;
state.subtract = false;
state.halfcarry = false;
break;
// TODO: case 0x27: break; // DAA
case 0x2F: // CPL Complement accumulator
state.A = ~state.A;
state.subtract = true;
state.halfcarry = true;
case 0xC3: // JP nn
state.PC = readPC16();
mcycles = 4;
break;
case 0xE9: // JP HL
state.PC = state.HL;
break;
case 0x18: // JR e
state.PC += (s8)readPC8();
break;
case 0xCD: // CALL nn
doCall(readPC16());
mcycles = 6;
break;
case 0xC9: // RET
doRet();
mcycles = 4;
break;
case 0xD9: // RETI
doRet();
state.IME = IME_SCHEDULED;
mcycles = 4;
break;
case 0xF3: // DI
state.IME = IME_OFF;
break;
case 0xFB: // EI
state.IME = IME_SCHEDULED;
break;
case 0x76: // HALT
halted = true;
break;
case 0xE8: // ADD SP, e8
{
u32 lhs = state.SP;
s32 rhs = (s8)readPC8();
u32 low_add = (lhs & 0x0FFF) + (rhs & 0x0FFF);
state.halfcarry = (low_add & 0x1000);
u32 res32 = lhs + rhs;
state.carry = (res32 & 0x10000);
state.SP = (u16)res32;
state.subtract = false;
state.zero = false;
mcycles = 4;
}
break;
default:
panic("Unknown opcode 0x%x\n",op);
}
}
processed_mcycles += mcycles;
}