import math as math import numpy as np def lookAt(eyeX, eyeY, eyeZ, cX, cY, cZ, upX, upY, upZ): F = np.matrix([eyeX - cX, eyeY -cY, eyeZ - cZ]) UP = np.matrix([upX, upY, upZ]) f = F / math.sqrt(np.sum(np.square(F))) UP = UP / math.sqrt(np.sum(np.square(UP))) s = np.cross(f, UP) u = np.cross((s / math.sqrt(np.sum(np.square(s)))), f) mat = np.matrix([ [s[0, 0], s[0, 1], s[0, 2], 0], [u[0, 0], u[0, 1], u[0, 2], 0], [-f[0, 0], -f[0, 1], -f[0, 2], 0], [0, 0, 0, 1] ]) return np.transpose(mat) def orthogonalMatrix(r, l, t, b, f, n): mat = np.matrix([ [2 / (r - l), 0, 0, -(r + l) / (r - l)], [0, 2 / (t - b), 0, -(t + b) / (t - b)], [0, 0, -2 / (f - n), -(f + n) / (f - n)], [0, 0, 0, 1] ]) return np.transpose(mat) def perspectiveMatrix(fovy, aspect, znear, zfar): fovy_rads = fovy * math.pi / 180 f = math.cos(fovy_rads / 2.0) / math.sin(fovy_rads / 2.0) a = (zfar + znear) / (znear - zfar) b = (2 * zfar * znear) / (znear - zfar) mat = np.matrix([[f / aspect, 0, 0, 0], [0, f, 0, 0], [0, 0, a, b], [0, 0, -1, 0]], np.float32) return np.transpose(mat) def translate(x, y, z): mat = np.matrix([[1, 0, 0, x], [0, 1, 0, y], [0, 0, 1, z], [0, 0, 0, 1]], np.float32) return np.transpose(mat) def rotate(x, y, z, d4=False): if not d4: mat = np.matrix([[1, 0, 0], [0, math.cos(x), -math.sin(x)], [0, math.sin(x), math.cos(x)]], np.float32) mat = mat * np.matrix([[math.cos(y), 0, -math.sin(y)], [0, 1, 0], [math.sin(y), 0, math.cos(y)]], np.float32) mat = mat * np.matrix([[math.cos(z), -math.sin(z), 0], [math.sin(z), math.cos(z), 0], [0, 0, 1]], np.float32) else: mat = np.matrix( [[1, 0, 0, 0], [0, math.cos(x), -math.sin(x), 0], [0, math.sin(x), math.cos(x), 0], [0, 0, 0, 1]], np.float32) mat = mat * np.matrix( [[math.cos(y), 0, -math.sin(y), 0], [0, 1, 0, 0], [math.sin(y), 0, math.cos(y), 0], [0, 0, 0, 1]], np.float32) mat = mat * np.matrix( [[math.cos(z), -math.sin(z), 0, 0], [math.sin(z), math.cos(z), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32) return np.transpose(mat)