#version 450 layout(location = 0) flat in uvec2 fragRasterPos; layout(location = 1) flat in uint fragVolumeStart; layout(location = 2) in vec3 origPosition; layout(location = 3) flat in uint facing; layout(location = 0) out vec4 outColor; layout(binding = 2) buffer SceneInfoBuffer{ uint infos[]; } scene_info; uvec4 unpack_color(uint val) { // left most 8 bits first uint val1 = (val >> 24); uint val2 = (val << 8) >> 24; uint val3 = (val << 16) >> 24; uint val4 = (val << 24) >> 24; return uvec4(val4, val3, val2, val1); } uint sample_neighbor_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) { uint array_descr_start = volume_start + 6 + scene_info.infos[0]; uint color_array_start = array_descr_start + 24; uint top_color_size_u = scene_info.infos[array_descr_start]; uint top_color_size_v = scene_info.infos[array_descr_start + 1]; uint bottom_color_size_u = scene_info.infos[array_descr_start + 2]; uint bottom_color_size_v = scene_info.infos[array_descr_start + 3]; uint left_color_size_u = scene_info.infos[array_descr_start + 4]; uint left_color_size_v = scene_info.infos[array_descr_start + 5]; uint right_color_size_u = scene_info.infos[array_descr_start + 6]; uint right_color_size_v = scene_info.infos[array_descr_start + 7]; uint front_color_size_u = scene_info.infos[array_descr_start + 8]; uint front_color_size_v = scene_info.infos[array_descr_start + 9]; uint back_color_size_u = scene_info.infos[array_descr_start + 10]; uint back_color_size_v = scene_info.infos[array_descr_start + 11]; uint top_neighbor_size_u = scene_info.infos[array_descr_start + 12]; uint top_neighbor_size_v = scene_info.infos[array_descr_start + 13]; uint bottom_neighbor_size_u = scene_info.infos[array_descr_start + 14]; uint bottom_neighbor_size_v = scene_info.infos[array_descr_start + 15]; uint left_neighbor_size_u = scene_info.infos[array_descr_start + 16]; uint left_neighbor_size_v = scene_info.infos[array_descr_start + 17]; uint right_neighbor_size_u = scene_info.infos[array_descr_start + 18]; uint right_neighbor_size_v = scene_info.infos[array_descr_start + 19]; uint front_neighbor_size_u = scene_info.infos[array_descr_start + 20]; uint front_neighbor_size_v = scene_info.infos[array_descr_start + 21]; uint back_neighbor_size_u = scene_info.infos[array_descr_start + 22]; uint back_neighbor_size_v = scene_info.infos[array_descr_start + 23]; uint top_color_size = top_color_size_u * top_color_size_v; uint bottom_color_size = bottom_color_size_u * bottom_color_size_v; uint left_color_size = left_color_size_u * left_color_size_v; uint right_color_size = right_color_size_u * right_color_size_v; uint front_color_size = front_color_size_u * front_color_size_v; uint back_color_size = back_color_size_u * back_color_size_v; uint color_array_end = color_array_start + top_color_size + bottom_color_size + left_color_size + right_color_size + front_color_size + back_color_size; uint top_neighbor_size = top_neighbor_size_u * top_neighbor_size_v; uint bottom_neighbor_size = bottom_neighbor_size_u * bottom_neighbor_size_v; uint left_neighbor_size = left_neighbor_size_u * left_neighbor_size_v; uint right_neighbor_size = right_neighbor_size_u * right_neighbor_size_v; uint front_neighbor_size = front_neighbor_size_u * front_neighbor_size_v; uint back_neighbor_size = back_neighbor_size_u * back_neighbor_size_v; // maybe do an array solution for this as well uint array_start = color_array_end + uint(f > 0) * top_neighbor_size + uint(f > 1) * bottom_neighbor_size + uint(f > 2) * left_neighbor_size + uint(f > 3) * right_neighbor_size + uint(f > 4) * front_neighbor_size; uint us[6] = {top_neighbor_size_u, bottom_neighbor_size_u, left_neighbor_size_u, right_neighbor_size_u, front_neighbor_size_u, back_neighbor_size_u}; uint vs[6] = {top_neighbor_size_v, bottom_neighbor_size_v, left_neighbor_size_v, right_neighbor_size_v, front_neighbor_size_v, back_neighbor_size_v}; uint u_size = us[f]; uint v_size = vs[f]; uint value = scene_info.infos[array_start + raster_pos.x * v_size * uint(u_size > 1) + raster_pos.y * uint(v_size > 1)]; return value; } uvec4 sample_color_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) { uint array_descr_start = volume_start + 6 + scene_info.infos[0]; uint color_array_start = array_descr_start + 24; uint top_color_size_u = scene_info.infos[array_descr_start]; uint top_color_size_v = scene_info.infos[array_descr_start + 1]; uint bottom_color_size_u = scene_info.infos[array_descr_start + 2]; uint bottom_color_size_v = scene_info.infos[array_descr_start + 3]; uint left_color_size_u = scene_info.infos[array_descr_start + 4]; uint left_color_size_v = scene_info.infos[array_descr_start + 5]; uint right_color_size_u = scene_info.infos[array_descr_start + 6]; uint right_color_size_v = scene_info.infos[array_descr_start + 7]; uint front_color_size_u = scene_info.infos[array_descr_start + 8]; uint front_color_size_v = scene_info.infos[array_descr_start + 9]; uint back_color_size_u = scene_info.infos[array_descr_start + 10]; uint back_color_size_v = scene_info.infos[array_descr_start + 11]; uint top_size = top_color_size_u * top_color_size_v; uint bottom_size = bottom_color_size_u * bottom_color_size_v; uint left_size = left_color_size_u * left_color_size_v; uint right_size = right_color_size_u * right_color_size_v; uint front_size = front_color_size_u * front_color_size_v; uint back_size = back_color_size_u * back_color_size_v; // maybe do an array solution for this as well uint array_start = color_array_start + uint(f > 0) * top_size + uint(f > 1) * bottom_size + uint(f > 2) * left_size + uint(f > 3) * right_size + uint(f > 4) * front_size; uint us[6] = {top_color_size_u, bottom_color_size_u, left_color_size_u, right_color_size_u, front_color_size_u, back_color_size_u}; uint vs[6] = {top_color_size_v, bottom_color_size_v, left_color_size_v, right_color_size_v, front_color_size_v, back_color_size_v}; uint u_size = us[f]; uint v_size = vs[f]; uint value = scene_info.infos[array_start + raster_pos.x * v_size * uint(u_size > 1) + raster_pos.y * uint(v_size > 1)]; return unpack_color(value); } vec3 get_light_position(uint light_index) { return vec3(float(scene_info.infos[light_index]), float(scene_info.infos[light_index + 1]), float(scene_info.infos[light_index + 2])); } vec3 get_light_color(uint light_index) { return vec3(float(scene_info.infos[light_index + 3]) / 255.0, float(scene_info.infos[light_index + 4]) / 255.0, float(scene_info.infos[light_index + 5]) / 255.0); } vec3 get_lighting_color(uint volume_start, vec3 starting_pos, vec4 orig_color_sample) { uint max_light_num = scene_info.infos[0]; uint light_num = 0; // setup volume info uint volume_index = volume_start; uint volume_pos_x = scene_info.infos[volume_index + 0]; uint volume_pos_y = scene_info.infos[volume_index + 1]; uint volume_pos_z = scene_info.infos[volume_index + 2]; // setup light info uint light_index = scene_info.infos[volume_start + 6 + light_num]; vec3 light_direction = get_light_position(light_index) - starting_pos; vec3 light_color = get_light_color(light_index); bool x_pos = light_direction.x > 0.0; bool x_null = (light_direction.x == 0.0); bool y_pos = light_direction.y > 0.0; bool y_null = (light_direction.y == 0.0); bool z_pos = light_direction.z > 0.0; bool z_null = (light_direction.z == 0.0); // initialize color vec3 color_sum = vec3(0.0, 0.0, 0.0) + (orig_color_sample.xyz * 0.01); uint max_iterations = max_light_num * scene_info.infos[1]; for (int i = 0; i < max_iterations; i++) { float x_border = float(volume_pos_x + (scene_info.infos[volume_index + 3]) * uint(x_pos)) - 0.5; float y_border = float(volume_pos_y + (scene_info.infos[volume_index + 4]) * uint(y_pos)) - 0.5; float z_border = float(volume_pos_z + (scene_info.infos[volume_index + 5]) * uint(z_pos)) - 0.5; bool needs_next_light = false; // 2 is way behind the light position and should result in no collision being detected float x_factor = 2.0; float y_factor = 2.0; float z_factor = 2.0; if (!x_null) { x_factor = (x_border - starting_pos.x) / light_direction.x; } if (!y_null) { y_factor = (y_border - starting_pos.y) / light_direction.y; } if (!z_null) { z_factor = (z_border - starting_pos.z) / light_direction.z; } if ((x_factor >= 1.0) && (y_factor >= 1.0) && (z_factor >= 1.0)) { // no hit, add light color result color_sum += (orig_color_sample.xyz * light_color) / ((0.01 * length(light_direction) * length(light_direction)) + 1.0); needs_next_light = true; } else { // if there is a border hit before reaching the light // change to the relevant next volume // Todo: look into removing ifs from this uint hit_facing = 0; uint u = 0; uint v = 0; if (x_factor <= y_factor && x_factor <= z_factor) { if (x_pos) { hit_facing = 3; } else { hit_facing = 2; } vec3 intersection_pos = starting_pos + x_factor * light_direction; u = uint(round(intersection_pos.y)) - volume_pos_y; v = uint(round(intersection_pos.z)) - volume_pos_z; } if (y_factor <= x_factor && y_factor <= z_factor) { if (y_pos) { hit_facing = 5; } else { hit_facing = 4; } vec3 intersection_pos = starting_pos + y_factor * light_direction; u = uint(round(intersection_pos.x)) - volume_pos_x; v = uint(round(intersection_pos.z)) - volume_pos_z; } if (z_factor <= x_factor && z_factor <= y_factor) { if (z_pos) { hit_facing = 0; } else { hit_facing = 1; } vec3 intersection_pos = starting_pos + z_factor * light_direction; u = uint(round(intersection_pos.x)) - volume_pos_x; v = uint(round(intersection_pos.y)) - volume_pos_y; } uint next_neighbor = sample_neighbor_from_scene_info(volume_index, uvec2(u, v), hit_facing); uvec4 color_sample = sample_color_from_scene_info(volume_index, uvec2(u, v), hit_facing); if (color_sample == uvec4(0, 0, 0, 0)) { // not a color hit, so check neighbor if (next_neighbor != 0) { volume_index = next_neighbor; volume_pos_x = scene_info.infos[volume_index + 0]; volume_pos_y = scene_info.infos[volume_index + 1]; volume_pos_z = scene_info.infos[volume_index + 2]; } else { // neightbor miss, shouldn't happen with a light inside of a volume. Might happen with ambient light. For now move on to next light. needs_next_light = true; } } else { // color hit, move on to next light (may change once transparents are implemnted) needs_next_light = true; } } if (needs_next_light) { light_num += 1; if (light_num >= max_light_num) { break; } // set up the new light light_index = scene_info.infos[volume_start + 6 + light_num]; if (light_index == 0) { // abort if there is no new light break; } light_direction = get_light_position(light_index) - starting_pos; light_color = get_light_color(light_index); x_pos = light_direction.x > 0.0; x_null = (light_direction.x == 0.0); y_pos = light_direction.y > 0.0; y_null = (light_direction.y == 0.0); z_pos = light_direction.z > 0.0; z_null = (light_direction.z == 0.0); // reset volume info volume_index = volume_start; volume_pos_x = scene_info.infos[volume_index + 0]; volume_pos_y = scene_info.infos[volume_index + 1]; volume_pos_z = scene_info.infos[volume_index + 2]; } } return color_sum; } void main() { uint max_length = scene_info.infos[0]; uint last = scene_info.infos[max_length]; uvec4 color_roughness = sample_color_from_scene_info(fragVolumeStart, fragRasterPos, facing); vec4 orig_color_sample = vec4(float(color_roughness.x) / 255.0, float(color_roughness.y) / 255.0, float(color_roughness.z) / 255.0, 1); // singular raytracing //vec3 color_sum = get_lighting_color(fragVolumeStart, origPosition, orig_color_sample); // diffuse raytracing using a quadratic raster of rays int raster_half_steps = 0; float raster_distance = 0.01; int raster_points = (2 * raster_half_steps + 1) * (2 * raster_half_steps + 1); vec3 color_sum = vec3(0.0, 0.0, 0.0); for (int u_offset = -raster_half_steps; u_offset <= raster_half_steps; u_offset++) { for (int v_offset = -raster_half_steps; v_offset <= raster_half_steps; v_offset++) { float x_offset = raster_distance * float(u_offset) * float(facing == 0 || facing == 1 || facing == 4 || facing == 5); float y_offset = raster_distance * float(u_offset) * float(facing == 2 || facing == 3); y_offset += raster_distance * float(v_offset) * float(facing == 0 || facing == 1); float z_offset = raster_distance * float(v_offset) * float(facing == 4 || facing == 5 || facing == 2 || facing == 3); vec3 offset = vec3(x_offset, y_offset, z_offset); color_sum += get_lighting_color(fragVolumeStart, origPosition + offset, orig_color_sample) / float(raster_points); } } outColor = vec4(color_sum, 1.0); }