23 lines
545 B
Python
23 lines
545 B
Python
|
# Verfahren von Heun zur numerischen Lösung von Anfangswertaufgaben.
|
||
|
|
||
|
def heun(xk,yk,h,ys):
|
||
|
xk1 = xk + h
|
||
|
yk1p = yk + h * ys(xk,yk)
|
||
|
yk1 = 0.5*(yk+yk1p+h*ys(xk1,yk1p))
|
||
|
return (xk1,yk1p)
|
||
|
|
||
|
def run_heun(K,h,x0,y0,ys):
|
||
|
if not isinstance(ys,list): ys = [ys]
|
||
|
if not isinstance(y0,list): y0 = [y0]
|
||
|
xk = x0
|
||
|
yk = y0
|
||
|
xks = x0
|
||
|
yks = [ [v] for v in y0 ]
|
||
|
|
||
|
for i in range(K):
|
||
|
for j in range(len(ys)):
|
||
|
xk,yk[j] = heun(xk,yk[j],h,ys[i])
|
||
|
xks.append(xk)
|
||
|
yks[j].append(yk[j])
|
||
|
|