travking fluid particle
This commit is contained in:
parent
8a5de47da3
commit
54bda855e5
10 changed files with 702 additions and 37 deletions
|
@ -103,6 +103,53 @@ class Client:
|
|||
self.world_provider.world.put_object(x_pos, y_pos, z_pos, Cuboid().setColor(
|
||||
random.randint(0, 100) / 100.0, random.randint(0, 100) / 100.0, random.randint(0, 100) / 100.0))
|
||||
|
||||
colors = {}
|
||||
for plate in range(int(np.max(self.world_provider.world.plates))):
|
||||
colors[plate + 1] = (random.randint(0, 100) / 100.0,
|
||||
random.randint(0, 100) / 100.0,
|
||||
random.randint(0, 100) / 100.0)
|
||||
|
||||
for x_pos in range(0, 100):
|
||||
for y_pos in range(0, 100):
|
||||
for z_pos in range(0, 1):
|
||||
if self.world_provider.world.plates[x_pos, y_pos] == -1:
|
||||
r, g, b, = 0, 0, 1 #0.5, 0.5, 0.5
|
||||
else:
|
||||
r, g, b = colors[int(self.world_provider.world.plates[x_pos, y_pos])]
|
||||
self.world_provider.world.set_color(x_pos, y_pos, z_pos, r, g, b)
|
||||
|
||||
total_x = self.world_provider.world.chunk_n_x * self.world_provider.world.chunk_size_x
|
||||
total_y = self.world_provider.world.chunk_n_y * self.world_provider.world.chunk_size_y
|
||||
for x_pos in range(0, 100):
|
||||
for y_pos in range(0, 100):
|
||||
if self.world_provider.world.faults[x_pos, y_pos] == -2:
|
||||
self.world_provider.world.set_color(x_pos, y_pos, 0, 0, 0, 0)
|
||||
|
||||
for line_index, line in enumerate(self.world_provider.world.fault_lines):
|
||||
for x_pos in range(0, 100):
|
||||
for y_pos in range(0, 100):
|
||||
if self.world_provider.world.faults[x_pos, y_pos] == line_index:
|
||||
if line_index != 9:
|
||||
self.world_provider.world.set_color(x_pos, y_pos, 0, 0, 0, 1)
|
||||
else:
|
||||
self.world_provider.world.set_color(x_pos, y_pos, 0, 1, 1, 1)
|
||||
|
||||
for x_pos in range(0, 100):
|
||||
for y_pos in range(0, 100):
|
||||
for z_pos in range(0, 1):
|
||||
if [x_pos, y_pos] in self.world_provider.world.fault_nodes:
|
||||
r, g, b = 1, 0, 0
|
||||
self.world_provider.world.set_color(x_pos, y_pos, z_pos, r, g, b)
|
||||
|
||||
# # visualize direction lengths
|
||||
# lengths = np.sqrt(np.sum(np.square(self.world_provider.world.directions), axis=2))
|
||||
# lengths = lengths / np.max(lengths)
|
||||
# for x_pos in range(0, 100):
|
||||
# for y_pos in range(0, 100):
|
||||
# for z_pos in range(0, 1):
|
||||
# r, g, b = lengths[x_pos, y_pos], lengths[x_pos, y_pos], lengths[x_pos, y_pos]
|
||||
# self.world_provider.world.set_color(x_pos, y_pos, z_pos, r, g, b)
|
||||
|
||||
self.projMatrix = perspectiveMatrix(45.0, 400 / 400, 0.01, MAX_DISTANCE)
|
||||
|
||||
self.rx = self.cx = self.cy = 0
|
||||
|
@ -222,28 +269,31 @@ class Client:
|
|||
max_value_vel = np.max(vel)
|
||||
# max_value_vel = np.sqrt(3)
|
||||
|
||||
print('round')
|
||||
print('sum n: %f' % np.sum(self.n))
|
||||
print('max n: %f' % np.max(self.n))
|
||||
print('min n: %f' % np.min(self.n))
|
||||
print('sum vel: %f' % np.sum(vel))
|
||||
print('max vel: %f' % np.max(vel))
|
||||
print('min vel: %f' % np.min(vel))
|
||||
# print('round')
|
||||
# print('sum n: %f' % np.sum(self.n))
|
||||
# print('max n: %f' % np.max(self.n))
|
||||
# print('min n: %f' % np.min(self.n))
|
||||
# print('sum vel: %f' % np.sum(vel))
|
||||
# print('max vel: %f' % np.max(vel))
|
||||
# print('min vel: %f' % np.min(vel))
|
||||
|
||||
for x_pos in range(0, 100):
|
||||
for y_pos in range(0, 100):
|
||||
for z_pos in range(0, 1):
|
||||
if self.state == 2:
|
||||
r, g, b = value_to_color(int(self.gravity_applies[x_pos, y_pos, z_pos]), 0, 1)
|
||||
if self.state == 1:
|
||||
r, g, b = value_to_color(vel[x_pos, y_pos, z_pos], min_value, max_value_vel)
|
||||
if self.state == 0:
|
||||
r, g, b = value_to_color(self.n[x_pos, y_pos, z_pos], min_value, max_value_n)
|
||||
|
||||
self.world_provider.world.set_color(x_pos, y_pos, z_pos, r, g, b)
|
||||
self.world_provider.world.set_color(int(round(self.test_pixel[0])),
|
||||
int(round(self.test_pixel[1])),
|
||||
int(round(self.test_pixel[2])), 1.0, 1.0, 1.0)
|
||||
# for x_pos in range(0, 100):
|
||||
# for y_pos in range(0, 100):
|
||||
# for z_pos in range(0, 1):
|
||||
# # if self.state == 2:
|
||||
# # r, g, b = value_to_color(int(self.gravity_applies[x_pos, y_pos, z_pos]), 0, 1)
|
||||
# # if self.state == 1:
|
||||
# # r, g, b = value_to_color(vel[x_pos, y_pos, z_pos], min_value, max_value_vel)
|
||||
# # if self.state == 0:
|
||||
# # r, g, b = value_to_color(self.n[x_pos, y_pos, z_pos], min_value, max_value_n)
|
||||
# r, g, b, = 128, 128, 128
|
||||
# if [x_pos, y_pos] in self.world_provider.world.fault_nodes:
|
||||
# r, g, b = 128, 0, 0
|
||||
#
|
||||
# self.world_provider.world.set_color(x_pos, y_pos, z_pos, r, g, b)
|
||||
# self.world_provider.world.set_color(int(round(self.test_pixel[0])),
|
||||
# int(round(self.test_pixel[1])),
|
||||
# int(round(self.test_pixel[2])), 1.0, 1.0, 1.0)
|
||||
|
||||
# print(1.0 / (time.time() - self.time))
|
||||
self.time = time.time()
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
class FluidSimParameter:
|
||||
viscosity = 0.1 / 3.0
|
||||
# Pr = 1.0
|
||||
Pr = 100.0
|
||||
Pr = 1.0
|
||||
# vc = 1.0
|
||||
vc = 0.5
|
||||
|
||||
|
|
185
FluidSim/FluidSimulator.py
Normal file
185
FluidSim/FluidSimulator.py
Normal file
|
@ -0,0 +1,185 @@
|
|||
from FluidSim.StaggeredArray import StaggeredArray2D
|
||||
import numpy as np
|
||||
import scipy
|
||||
import scipy.sparse
|
||||
import scipy.sparse.linalg
|
||||
|
||||
class FluidSimulator2D:
|
||||
def __init__(self, x_n: int, y_n: int):
|
||||
self.x_n = x_n
|
||||
self.y_n = y_n
|
||||
|
||||
self.array = StaggeredArray2D(self.x_n, self.y_n)
|
||||
|
||||
self.coordinate_array = np.zeros((x_n, y_n, 2), dtype=np.int)
|
||||
for x in range(x_n):
|
||||
for y in range(y_n):
|
||||
self.coordinate_array[x, y, :] = x, y
|
||||
|
||||
def advect(self, field: np.ndarray, delta_t: float):
|
||||
u_x, u_y = self.array.get_velocity_arrays()
|
||||
u = np.stack([u_x, u_y], axis=2)
|
||||
|
||||
def runge_kutta_layer(input, time_elapsed, border_handling='clamp'):
|
||||
shifted_pos = np.round(self.coordinate_array - u * time_elapsed).astype(np.int) * (u < 0) +\
|
||||
(self.coordinate_array - u * time_elapsed).astype(np.int) * (u > 0) + \
|
||||
self.coordinate_array * (u == 0)
|
||||
# border handling
|
||||
if border_handling == 'clamp':
|
||||
shifted_pos = np.maximum(0, shifted_pos)
|
||||
shifted_pos[:, :, 0] = np.minimum(len(input), shifted_pos[:, :, 0])
|
||||
shifted_pos[:, :, 1] = np.minimum(len(input[0]), shifted_pos[:, :, 1])
|
||||
pass
|
||||
layer = np.zeros(field.shape, dtype=field.dtype)
|
||||
for x in range(self.x_n):
|
||||
for y in range(self.y_n):
|
||||
layer[x, y] = field[shifted_pos[x, y][0], shifted_pos[x, y][1]] - field[x, y]
|
||||
return layer
|
||||
|
||||
k1 = runge_kutta_layer(field, delta_t)
|
||||
|
||||
k2 = runge_kutta_layer(field + 0.5 * delta_t * k1, 0.5 * delta_t)
|
||||
|
||||
k3 = runge_kutta_layer(field + 0.75 * delta_t * k2, 0.75 * delta_t) # maybe 0.25 instead?
|
||||
|
||||
# new_field = field + 2.0 / 9.0 * delta_t * k1 + 3.0 / 9.0 * delta_t * k2 + 4.0 / 9.0 * delta_t * k3
|
||||
new_field = field + k1
|
||||
|
||||
return new_field
|
||||
|
||||
def get_timestep(self, f, h=1.0, k_cfl=1.0):
|
||||
f_length = np.max(np.sqrt(np.sum(np.square(f), axis=-1)))
|
||||
|
||||
u_x, u_y = self.array.get_velocity_arrays()
|
||||
u_length = np.max(np.sqrt(np.square(u_x) + np.square(u_y)))
|
||||
|
||||
# return k_cfl * h / (u_length + np.sqrt(h + f_length))
|
||||
return k_cfl * h / u_length
|
||||
|
||||
def update_velocity(self, timestep, border_handling='constant'):
|
||||
if border_handling == 'constant':
|
||||
p_diff_x = np.pad(self.array.p, [(0, 1), (0, 0)], mode='constant', constant_values=0) -\
|
||||
np.pad(self.array.p, [(1, 0), (0, 0)], mode='constant', constant_values=0)
|
||||
borders_fluid_x = np.pad(self.array.has_fluid, [(0, 1), (0, 0)], mode='constant', constant_values=False) +\
|
||||
np.pad(self.array.has_fluid, [(1, 0), (0, 0)], mode='constant', constant_values=False)
|
||||
|
||||
p_diff_y = np.pad(self.array.p, [(0, 0), (0, 1)], mode='constant', constant_values=0) -\
|
||||
np.pad(self.array.p, [(0, 0), (1, 0)], mode='constant', constant_values=0)
|
||||
borders_fluid_y = np.pad(self.array.has_fluid, [(0, 0), (0, 1)], mode='constant', constant_values=False) +\
|
||||
np.pad(self.array.has_fluid, [(0, 0), (1, 0)], mode='constant', constant_values=False)
|
||||
else:
|
||||
p_diff_x = 0
|
||||
p_diff_y = 0
|
||||
borders_fluid_x = False
|
||||
borders_fluid_y = False
|
||||
|
||||
u_x_new = self.array.u_x - (timestep * p_diff_x) * (1.0 * borders_fluid_x)
|
||||
u_y_new = self.array.u_y - (timestep * p_diff_y) * (1.0 * borders_fluid_y)
|
||||
|
||||
# clear all components that do not border the fluid
|
||||
u_x_new *= (1.0 * borders_fluid_x)
|
||||
u_y_new *= (1.0 * borders_fluid_y)
|
||||
|
||||
return u_x_new, u_y_new
|
||||
|
||||
def calculate_divergence(self, h=1.0):
|
||||
dx_u = (self.array.u_x[1:, :] - self.array.u_x[:-1, :]) / h
|
||||
dy_u = (self.array.u_y[:, 1:] - self.array.u_y[:, -1]) / h
|
||||
|
||||
return dx_u + dy_u
|
||||
|
||||
def pressure_solve(self, divergence):
|
||||
new_p = np.zeros((self.array.x_n, self.array.y_n))
|
||||
connection_matrix = np.zeros((self.array.x_n * self.array.y_n, self.array.x_n * self.array.y_n))
|
||||
flat_divergence = np.zeros((self.array.x_n * self.array.y_n))
|
||||
|
||||
for x in range(self.array.x_n):
|
||||
for y in range(self.array.y_n):
|
||||
flat_divergence[x * self.array.y_n + y] = divergence[x, y]
|
||||
|
||||
neighbors = 4
|
||||
if x == 0:
|
||||
neighbors -= 1
|
||||
else:
|
||||
connection_matrix[x * self.array.y_n + y, (x - 1) * self.array.y_n + y] = 1
|
||||
if y == 0:
|
||||
neighbors -= 1
|
||||
else:
|
||||
connection_matrix[x * self.array.y_n + y, x * self.array.y_n + y - 1] = 1
|
||||
if x == self.array.x_n - 1:
|
||||
neighbors -= 1
|
||||
else:
|
||||
connection_matrix[x * self.array.y_n + y, (x + 1) * self.array.y_n + y] = 1
|
||||
if y == self.array.y_n - 1:
|
||||
neighbors -= 1
|
||||
else:
|
||||
connection_matrix[x * self.array.y_n + y, x * self.array.y_n + y + 1] = 1
|
||||
|
||||
connection_matrix[x * self.array.y_n + y, x * self.array.y_n + y] = -neighbors
|
||||
|
||||
p = scipy.sparse.linalg.spsolve(connection_matrix, -flat_divergence)
|
||||
|
||||
for x in range(self.array.x_n):
|
||||
for y in range(self.array.y_n):
|
||||
new_p[x, y] = p[x * self.array.y_n + y]
|
||||
return new_p
|
||||
|
||||
def timestep(self, external_f, h=1.0, k_cfl=1.0):
|
||||
"""
|
||||
:param external_f: external forces to be applied
|
||||
:param h: grid size
|
||||
:param k_cfl: speed up multiplier (reduces accuracy if > 1.0. Does not make much sense if smaller than 1.0)
|
||||
:return:
|
||||
"""
|
||||
delta_t = self.get_timestep(external_f, h, k_cfl)
|
||||
|
||||
has_fluid = self.advect(self.array.has_fluid * 1.0, delta_t)
|
||||
self.array.density = self.advect(self.array.density, delta_t)
|
||||
|
||||
# temp_u_x = self.advect(self.array.u_x, delta_t)
|
||||
# temp_u_y = self.advect(self.array.u_y, delta_t)
|
||||
# self.array.u_x = temp_u_x
|
||||
# self.array.u_y = temp_u_y
|
||||
#TODO advect velocity
|
||||
test_u = np.stack(self.array.get_velocity_arrays(), axis=2)
|
||||
test = self.advect(np.stack(self.array.get_velocity_arrays(), axis=2), delta_t)
|
||||
|
||||
# TODO maybe use dynamic threshold to conserve amount of cells containing fluid
|
||||
self.array.has_fluid = has_fluid >= 0.5
|
||||
# add more stuff to advect here. For example temperature, density, and other things. Maybe advect velocity.
|
||||
|
||||
# self.array.u_x, self.array.u_y = self.update_velocity(delta_t)
|
||||
# TODO add forces (a = F / m) -> add a to u
|
||||
|
||||
dx_u = (self.array.u_x[1:, :] - self.array.u_x[:-1, :]) / h
|
||||
dy_u = (self.array.u_y[:, 1:] - self.array.u_y[:, -1]) / h
|
||||
|
||||
dx_u = self.advect(dx_u, delta_t)
|
||||
dy_u = self.advect(dy_u, delta_t)
|
||||
|
||||
divergence = dx_u + dy_u
|
||||
# divergence = self.calculate_divergence(h)
|
||||
|
||||
self.array.p = self.pressure_solve(divergence)
|
||||
|
||||
self.array.u_x, self.array.u_y = self.update_velocity(delta_t)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
fs = FluidSimulator2D(50, 50)
|
||||
|
||||
fs.array.has_fluid[10, 10] = True
|
||||
|
||||
for i in range(100):
|
||||
fs.timestep(0)
|
||||
print(i)
|
||||
|
||||
print(fs.array.has_fluid[10, 10])
|
||||
print(np.sum(fs.array.has_fluid * 1.0))
|
||||
# test = fs.advect(fs.array.has_fluid * 1.0, 1.0)
|
||||
#
|
||||
# test2 = fs.update_velocity(1.0)
|
||||
#
|
||||
# test3 = fs.calculate_divergence()
|
||||
#
|
||||
# test4 = fs.pressure_solve(test3)
|
|
@ -37,6 +37,10 @@ def main():
|
|||
# Initial Conditions
|
||||
N = np.ones((Ny, Nx, NL)) # * rho0 / NL
|
||||
temperature = np.ones((Ny, Nx, NL), np.float) # * rho0 / NL
|
||||
|
||||
tracked_fluid = np.zeros((Ny, Nx, NL), np.float) # * rho0 / NL
|
||||
tracked_fluid[50:, :, 0] = 1
|
||||
|
||||
has_fluid = np.ones((Ny, Nx), dtype=np.bool)
|
||||
has_fluid[int(Ny/2):, :] = False
|
||||
np.random.seed(42)
|
||||
|
@ -56,13 +60,17 @@ def main():
|
|||
|
||||
# Cylinder boundary
|
||||
X, Y = np.meshgrid(range(Nx), range(Ny))
|
||||
|
||||
cylinder = (X - Nx / 4) ** 2 + (Y - Ny / 2) ** 2 < (Ny / 4) ** 2
|
||||
inner_cylinder = (X - Nx / 4) ** 2 + (Y - Ny / 2) ** 2 < (Ny / 4 - 2) ** 2
|
||||
cylinder[:, :] = False
|
||||
|
||||
N[cylinder] = 0
|
||||
N[0, :] = 0
|
||||
N[Ny - 1, :] = 0
|
||||
|
||||
temperature[cylinder] = 0
|
||||
|
||||
tracked_fluid[cylinder] = 0
|
||||
# N[int(Ny/2):, :] = 0
|
||||
|
||||
has_fluid[cylinder] = False
|
||||
|
@ -98,14 +106,17 @@ def main():
|
|||
temperature[:, :, i] = np.roll(temperature[:, :, i], cx, axis=1)
|
||||
temperature[:, :, i] = np.roll(temperature[:, :, i], cy, axis=0)
|
||||
|
||||
tracked_fluid[:, :, i] = np.roll(tracked_fluid[:, :, i], cx, axis=1)
|
||||
tracked_fluid[:, :, i] = np.roll(tracked_fluid[:, :, i], cy, axis=0)
|
||||
|
||||
# has_fluid = new_has_fluid > 0.5
|
||||
# new_has_fluid[F_sum == 0] += has_fluid[F_sum == 0] * 1.0
|
||||
# new_has_fluid[(np.abs(F_sum) < 0.000000001)] = 0
|
||||
|
||||
fluid_sum = np.sum(has_fluid * 1.0)
|
||||
has_fluid = (new_has_fluid / np.sum(new_has_fluid * 1.0)) * fluid_sum
|
||||
|
||||
print('fluid_cells: %d' % np.sum(has_fluid * 1))
|
||||
#
|
||||
# fluid_sum = np.sum(has_fluid * 1.0)
|
||||
# has_fluid = (new_has_fluid / np.sum(new_has_fluid * 1.0)) * fluid_sum
|
||||
#
|
||||
# print('fluid_cells: %d' % np.sum(has_fluid * 1))
|
||||
|
||||
# for i in idxs:
|
||||
# N[:, :, i] *= has_fluid
|
||||
|
@ -126,9 +137,13 @@ def main():
|
|||
bndryTemp = temperature[bndry, :]
|
||||
bndryTemp = bndryTemp[:, reflection_mapping]
|
||||
|
||||
bndryTracked = tracked_fluid[bndry, :]
|
||||
bndryTracked = bndryTracked[:, reflection_mapping]
|
||||
|
||||
sum_f = np.sum(N)
|
||||
print('Sum of Particles: %f' % sum_f)
|
||||
print('Sum of Temperature: %f' % np.sum(temperature))
|
||||
print('Sum of tacked particles: %f' % np.sum(tracked_fluid))
|
||||
|
||||
# sum_f_cyl = np.sum(N[cylinder])
|
||||
# print('Sum of Forces in cylinder: %f' % sum_f_cyl)
|
||||
|
@ -147,6 +162,9 @@ def main():
|
|||
# Calculate fluid variables
|
||||
rho = np.sum(N, 2)
|
||||
temp_rho = np.sum(temperature, 2)
|
||||
|
||||
tracked_rho = np.sum(tracked_fluid, 2)
|
||||
|
||||
ux = np.sum(N * cxs, 2) / rho
|
||||
uy = np.sum(N * cys, 2) / rho
|
||||
|
||||
|
@ -154,16 +172,28 @@ def main():
|
|||
uy[(np.abs(rho) < epsilon)] = 0
|
||||
|
||||
g = -params.g * (temp_rho - yy / Ny)
|
||||
|
||||
uy1 = (uy + g * params.t1 * (tracked_rho * 0.9 + 0.1))
|
||||
uy2 = (uy + g * params.t2 * (tracked_rho * 0.9 + 0.1))
|
||||
|
||||
# uy[np.abs(rho) >= epsilon] += g[np.abs(rho) >= epsilon] / 2.0
|
||||
uy += g / 2.0
|
||||
# uy += g / 2.0
|
||||
|
||||
# u_length = np.maximum(np.abs(ux), np.abs(uy))
|
||||
u_length = np.sqrt(np.square(ux) + np.square(uy))
|
||||
u_length1 = np.sqrt(np.square(ux) + np.square(uy1))
|
||||
u_length2 = np.sqrt(np.square(ux) + np.square(uy2))
|
||||
|
||||
u_max_length1 = np.max(u_length1)
|
||||
u_max_length2 = np.max(u_length2)
|
||||
u_max_length = max(u_max_length1, u_max_length2)
|
||||
|
||||
if u_max_length > 2:
|
||||
test = 1
|
||||
|
||||
u_max_length = np.max(u_length)
|
||||
if u_max_length > np.sqrt(2):
|
||||
ux = (ux / u_max_length) * np.sqrt(2)
|
||||
uy = (uy / u_max_length) * np.sqrt(2)
|
||||
uy1 = (uy1 / u_max_length) * np.sqrt(2)
|
||||
uy2 = (uy2 / u_max_length) * np.sqrt(2)
|
||||
|
||||
print('max vector part: %f' % u_max_length)
|
||||
# ux /= u_max_length
|
||||
|
@ -193,13 +223,17 @@ def main():
|
|||
|
||||
# Apply Collision
|
||||
temperature_eq = np.zeros(temperature.shape)
|
||||
tracked_eq = np.zeros(temperature.shape)
|
||||
Neq = np.zeros(N.shape)
|
||||
for i, cx, cy, w in zip(idxs, cxs, cys, weights):
|
||||
Neq[:, :, i] = rho * w * (
|
||||
1 + 3 * (cx * ux + cy * uy) + 9 * (cx * ux + cy * uy) ** 2 / 2 - 3 * (ux ** 2 + uy ** 2) / 2)
|
||||
1 + 3 * (cx * ux + cy * uy1) + 9 * (cx * ux + cy * uy1) ** 2 / 2 - 3 * (ux ** 2 + uy1 ** 2) / 2)
|
||||
|
||||
temperature_eq[:, :, i] = temp_rho * w * (
|
||||
1 + 3 * (cx * ux + cy * uy) + 9 * (cx * ux + cy * uy) ** 2 / 2 - 3 * (ux ** 2 + uy ** 2) / 2)
|
||||
1 + 3 * (cx * ux + cy * uy2) + 9 * (cx * ux + cy * uy2) ** 2 / 2 - 3 * (ux ** 2 + uy2 ** 2) / 2)
|
||||
|
||||
tracked_eq[:, :, i] = tracked_rho * w * (
|
||||
1 + 3 * (cx * ux + cy * uy1) + 9 * (cx * ux + cy * uy1) ** 2 / 2 - 3 * (ux ** 2 + uy1 ** 2) / 2)
|
||||
# test1 = np.sum(Neq)
|
||||
test2 = np.sum(N-Neq)
|
||||
if abs(test2) > 0.0001:
|
||||
|
@ -212,10 +246,12 @@ def main():
|
|||
|
||||
N += -(1.0 / params.t1) * (N - Neq)
|
||||
temperature += -(1.0 / params.t2) * (temperature - temperature_eq)
|
||||
tracked_fluid += -(1.0 / params.t1) * (tracked_fluid - tracked_eq)
|
||||
|
||||
# Apply boundary
|
||||
N[bndry, :] = bndryN
|
||||
temperature[bndry, :] = bndryTemp
|
||||
tracked_fluid[bndry, :] = bndryTracked
|
||||
|
||||
# temperature[0, :, 0] = 0
|
||||
# temperature[1, :, 0] = 0
|
||||
|
@ -223,8 +259,9 @@ def main():
|
|||
temperature[0, :, 0] /= 2
|
||||
temperature[1, :, 0] /= 2
|
||||
|
||||
temperature[Ny - 1, :, 0] = 1
|
||||
temperature[Ny - 2, :, 0] = 1
|
||||
if it <= 3000:
|
||||
temperature[Ny - 1, :, 0] = 1
|
||||
temperature[Ny - 2, :, 0] = 1
|
||||
|
||||
# n_sum = np.sum(N, 2)
|
||||
# n_sum_min = np.min(n_sum)
|
||||
|
@ -280,8 +317,12 @@ def main():
|
|||
plt.subplot(2, 2, 3)
|
||||
max_N = np.max(np.sum(N, 2))
|
||||
plt.imshow(np.sum(N, 2) / max_N * 2.0 - 1.0, cmap='bwr')
|
||||
|
||||
plt.clim(-.1, .1)
|
||||
|
||||
plt.subplot(2, 2, 4)
|
||||
plt.imshow(np.sum(tracked_fluid, 2) * 2.0 - 1.0, cmap='bwr')
|
||||
plt.clim(-.1, .1)
|
||||
|
||||
# ax = plt.gca()
|
||||
# ax.invert_yaxis()
|
||||
# ax.get_xaxis().set_visible(False)
|
||||
|
|
108
FluidSim/StaggeredArray.py
Normal file
108
FluidSim/StaggeredArray.py
Normal file
|
@ -0,0 +1,108 @@
|
|||
import numpy as np
|
||||
from scipy.signal import convolve
|
||||
|
||||
|
||||
class StaggeredArray2D:
|
||||
def __init__(self, x_n, y_n):
|
||||
"""
|
||||
creates a staggered array
|
||||
:param x_n: x size of the array
|
||||
:param y_n: y size of the array
|
||||
"""
|
||||
self.x_n = x_n
|
||||
self.y_n = y_n
|
||||
self.p = np.zeros((x_n, y_n), dtype=np.float)
|
||||
|
||||
self.u_x = np.zeros((x_n + 1, y_n), dtype=np.float)
|
||||
self.u_y = np.zeros((x_n, y_n + 1), dtype=np.float)
|
||||
|
||||
self.has_fluid = np.zeros((x_n, y_n), dtype=np.bool)
|
||||
self.density = np.zeros((x_n, y_n), dtype=np.float)
|
||||
|
||||
def get_velocity(self, x, y):
|
||||
"""
|
||||
get mid point value for the coordinates
|
||||
:param x: x coordinate
|
||||
:param y: y coordinate
|
||||
:return:
|
||||
"""
|
||||
assert 0 <= x < self.x_n, 'x value out of bounds!'
|
||||
assert 0 <= y < self.y_n, 'y value out of bounds!'
|
||||
|
||||
lower_x = self.u_x[x, y]
|
||||
upper_x = self.u_x[x + 1, y]
|
||||
|
||||
lower_y = self.u_y[x, y]
|
||||
upper_y = self.u_y[x, y + 1]
|
||||
|
||||
return (lower_x + upper_x) / 2.0, (lower_y + upper_y) / 2.0
|
||||
|
||||
def get_velocity_arrays(self):
|
||||
c_x = np.array([[0.5], [0.5]])
|
||||
u_x = convolve(self.u_x, c_x, mode='valid')
|
||||
|
||||
c_y = np.array([[0.5, 0.5]])
|
||||
u_y = convolve(self.u_y, c_y, mode='valid')
|
||||
|
||||
return u_x, u_y
|
||||
|
||||
|
||||
class StaggeredArray3D:
|
||||
def __init__(self, x_n, y_n, z_n):
|
||||
"""
|
||||
creates a staggered array
|
||||
:param x_n: x size of the array
|
||||
:param y_n: y size of the array
|
||||
:param z_n: z size of the array
|
||||
"""
|
||||
|
||||
self.x_n = x_n
|
||||
self.y_n = y_n
|
||||
self.z_n = z_n
|
||||
|
||||
self.p = np.zeros((x_n, y_n, z_n), dtype=np.float)
|
||||
|
||||
self.u_x = np.zeros((x_n + 1, y_n, z_n), dtype=np.float)
|
||||
self.u_y = np.zeros((x_n, y_n + 1, z_n), dtype=np.float)
|
||||
self.u_z = np.zeros((x_n, y_n, z_n + 1), dtype=np.float)
|
||||
|
||||
self.has_fluid = np.zeros((x_n, y_n, z_n), dtype=np.bool)
|
||||
|
||||
def get_velocity(self, x, y, z):
|
||||
"""
|
||||
get mid point value for the coordinates
|
||||
:param x: x coordinate
|
||||
:param y: y coordinate
|
||||
:param z: z coordinate
|
||||
:return:
|
||||
"""
|
||||
assert 0 <= x < self.x_n, 'x value out of bounds!'
|
||||
assert 0 <= y < self.y_n, 'y value out of bounds!'
|
||||
assert 0 <= z < self.z_n, 'y value out of bounds!'
|
||||
|
||||
lower_x = self.u_x[x, y, z]
|
||||
upper_x = self.u_x[x + 1, y, z]
|
||||
|
||||
lower_y = self.u_y[x, y, z]
|
||||
upper_y = self.u_y[x, y + 1, z]
|
||||
|
||||
lower_z = self.u_z[x, y, z]
|
||||
upper_z = self.u_z[x, y, z + 1]
|
||||
|
||||
return (lower_x + upper_x) / 2.0, (lower_y + upper_y) / 2.0, (lower_z + upper_z) / 2.0
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
sa = StaggeredArray2D(10, 10)
|
||||
|
||||
for x in range(11):
|
||||
for y in range(10):
|
||||
sa.u_x[x, y] = y
|
||||
|
||||
for x in range(10):
|
||||
for y in range(11):
|
||||
sa.u_y[x, y] = x
|
||||
|
||||
ux, uy = sa.get_velocity_arrays()
|
||||
|
||||
ux2, uy2 = sa.get_velocity(0, 0)
|
0
FluidSim/__init__.py
Normal file
0
FluidSim/__init__.py
Normal file
229
Objects/World.py
229
Objects/World.py
|
@ -7,6 +7,8 @@ from OpenGL.GLU import *
|
|||
from OpenGL.GL import *
|
||||
import math
|
||||
import numpy as np
|
||||
import random
|
||||
import sys
|
||||
|
||||
class WorldChunk(Structure):
|
||||
def __init__(self, width: int, length: int, height: int, programs: dict):
|
||||
|
@ -200,6 +202,11 @@ class World(Renderable):
|
|||
self.chunk_n_z = chunk_n_z
|
||||
self.programs = programs
|
||||
|
||||
self.fault_nodes = []
|
||||
self.fault_lines = []
|
||||
self.plates = None
|
||||
self.directions = None
|
||||
|
||||
self.chunks: [[[WorldChunk]]] = []
|
||||
for x in range(chunk_n_x):
|
||||
self.chunks.append([])
|
||||
|
@ -208,6 +215,228 @@ class World(Renderable):
|
|||
for z in range(chunk_n_z):
|
||||
self.chunks[x][y].append(None)
|
||||
|
||||
def generate(self, seed=None, sea_height=50, continental_height=200):
|
||||
if seed is None:
|
||||
seed = random.randrange(2**32)
|
||||
seed = 229805811
|
||||
print('Generation seed is %i' % seed)
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
node_n = self.chunk_n_x + self.chunk_n_y
|
||||
total_x = self.chunk_n_x * self.chunk_size_x
|
||||
total_y = self.chunk_n_y * self.chunk_size_y
|
||||
nodes = []
|
||||
for _ in range(node_n):
|
||||
nodes.append([random.randint(0, total_x - 1), random.randint(0, total_y - 1)])
|
||||
|
||||
# connections = np.random.randint(2, 5, len(nodes)) #np.zeros(len(nodes)) + 3
|
||||
connections = (np.abs(np.random.normal(0, 5, len(nodes))) + 2).astype(np.int)
|
||||
|
||||
def calc_min_vector(start, end):
|
||||
dx = end[0] - start[0]
|
||||
wrapped_dx = dx % total_x
|
||||
|
||||
dy = end[1] - start[1]
|
||||
wrapped_dy = dy % total_y
|
||||
|
||||
vector = np.array([dx, dy])
|
||||
if wrapped_dx < abs(dx):
|
||||
vector[0] = wrapped_dx
|
||||
if wrapped_dy < abs(dy):
|
||||
vector[1] = wrapped_dy
|
||||
return vector
|
||||
|
||||
def is_intersecting_any(start, end, edges):
|
||||
vec1 = calc_min_vector(start, end)
|
||||
|
||||
for (start2_index, end2_index) in edges:
|
||||
start2 = nodes[start2_index]
|
||||
end2 = nodes[end2_index]
|
||||
|
||||
vec2 = calc_min_vector(start2, end2)
|
||||
|
||||
norm1 = vec1 / np.sqrt(np.sum(np.square(vec1)))
|
||||
norm2 = vec2 / np.sqrt(np.sum(np.square(vec2)))
|
||||
|
||||
# parrallel
|
||||
parallel_threshold = 0.0001
|
||||
if np.sqrt(np.sum(np.square(norm1 - norm2))) < parallel_threshold or np.sqrt(np.sum(np.square(norm1 + norm2))) < parallel_threshold:
|
||||
t = (start[0] - start2[0]) / vec2[0]
|
||||
t2 = (end[0] - start2[0]) / vec2[0]
|
||||
s = (start2[0] - start[0]) / vec1[0]
|
||||
s2 = (end2[0] - start[0]) / vec1[0]
|
||||
if (start2[1] + t * vec2[1]) - start[1] < parallel_threshold:
|
||||
if (0 <= t <= 1.0 and 0 <= t2 <= 1.0) or (0 <= s <= 1.0 and 0 <= s2 <= 1.0):
|
||||
return True
|
||||
else:
|
||||
if start != start2 and end != end2 and end != start2 and start != end2:
|
||||
t = (vec1[0] * start[1] + vec1[1] * start2[0] - vec1[1] * start[0] - start2[1] * vec1[0]) / (vec2[1] * vec1[0] - vec2[0] * vec1[1])
|
||||
if 0 <= t <= 1.0:
|
||||
intersection = np.array(start2) + vec2 * t
|
||||
s = (intersection[0] - start[0]) / vec1[0]
|
||||
if 0 <= s <= 1.0:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
|
||||
for index, node in enumerate(nodes):
|
||||
distances = []
|
||||
for other_index, other_node in enumerate(nodes):
|
||||
if node != other_node and (index, other_index) not in self.fault_lines and\
|
||||
(other_index, index) not in self.fault_lines:
|
||||
if (not is_intersecting_any(node, other_node, self.fault_lines)) and (not is_intersecting_any(other_node, node, self.fault_lines)):
|
||||
distances.append((other_index, np.sqrt(np.sum(np.square(calc_min_vector(node, other_node))))))
|
||||
|
||||
distances.sort(key=lambda element: element[1])
|
||||
while connections[index] > 0 and len(distances) > 0:
|
||||
self.fault_lines.append((index, distances[0][0]))
|
||||
connections[distances[0][0]] -= 1
|
||||
connections[index] -= 1
|
||||
distances.pop(0)
|
||||
|
||||
self.fault_nodes = nodes
|
||||
|
||||
plates = np.zeros((total_x, total_y))
|
||||
faults = np.zeros((total_x, total_y)) - 1
|
||||
plate_bordering_fault = {}
|
||||
# draw fault lines
|
||||
for fault_index, fault_line in enumerate(self.fault_lines):
|
||||
start = self.fault_nodes[fault_line[0]]
|
||||
end = self.fault_nodes[fault_line[1]]
|
||||
vector = calc_min_vector(start, end)
|
||||
vector = vector / np.sqrt(np.sum(np.square(vector)))
|
||||
|
||||
point = np.array(start, dtype=np.float)
|
||||
plate_bordering_fault[fault_index] = []
|
||||
|
||||
while np.sqrt(np.sum(np.square(point - np.array(end)))) > 0.5:
|
||||
plates[int(point[0]), int(point[1])] = -1
|
||||
if faults[int(point[0]), int(point[1])] == -1:
|
||||
faults[int(point[0]), int(point[1])] = fault_index
|
||||
elif faults[int(point[0]), int(point[1])] != fault_index:
|
||||
faults[int(point[0]), int(point[1])] = -2
|
||||
point += 0.5 * vector
|
||||
point[0] %= total_x
|
||||
point[1] %= total_y
|
||||
self.faults = faults
|
||||
|
||||
plate = 1
|
||||
while np.any(plates == 0):
|
||||
start = np.where(plates == 0)
|
||||
start = (start[0][0], start[1][0])
|
||||
plates[start] = plate
|
||||
work_list = [start]
|
||||
|
||||
while len(work_list) > 0:
|
||||
work = work_list.pop()
|
||||
|
||||
up = (work[0], (work[1] + 1) % total_y)
|
||||
down = (work[0], (work[1] - 1) % total_y)
|
||||
left = ((work[0] - 1) % total_x, work[1])
|
||||
right = ((work[0] + 1) % total_x, work[1])
|
||||
|
||||
if plates[up] == -1 and plates[down] == -1 and plates[left] == -1 and plates[right] == -1:
|
||||
plates[work] = -1
|
||||
continue
|
||||
|
||||
if plates[up] <= 0:
|
||||
if plates[up] == 0:
|
||||
work_list.append(up)
|
||||
plates[up] = plate
|
||||
if plates[down] <= 0:
|
||||
if plates[down] == 0:
|
||||
work_list.append(down)
|
||||
plates[down] = plate
|
||||
if plates[left] <= 0:
|
||||
if plates[left] == 0:
|
||||
work_list.append(left)
|
||||
plates[left] = plate
|
||||
if plates[right] <= 0:
|
||||
if plates[right] == 0:
|
||||
work_list.append(right)
|
||||
plates[right] = plate
|
||||
|
||||
if faults[up] > -1:
|
||||
if plate not in plate_bordering_fault[faults[up]]:
|
||||
plate_bordering_fault[faults[up]].append(plate)
|
||||
if faults[down] > -1:
|
||||
if plate not in plate_bordering_fault[faults[down]]:
|
||||
plate_bordering_fault[faults[down]].append(plate)
|
||||
if faults[left] > -1:
|
||||
if plate not in plate_bordering_fault[faults[left]]:
|
||||
plate_bordering_fault[faults[left]].append(plate)
|
||||
if faults[right] > -1:
|
||||
if plate not in plate_bordering_fault[faults[right]]:
|
||||
plate_bordering_fault[faults[right]].append(plate)
|
||||
plate += 1
|
||||
|
||||
plate_num = plate
|
||||
for plate in range(1, plate_num):
|
||||
if np.sum(plates == plate) < 20:
|
||||
plates[plates == plate] = -1
|
||||
for key, item in plate_bordering_fault.items():
|
||||
if plate in item:
|
||||
item.remove(plate)
|
||||
|
||||
directions = np.zeros((total_x, total_y, 3))
|
||||
heights = np.zeros((total_x, total_y))
|
||||
for plate in range(1, plate_num):
|
||||
if random.randint(1, 2) == 1:
|
||||
heights[plates == plate] = sea_height
|
||||
else:
|
||||
heights[plates == plate] = continental_height
|
||||
|
||||
coords = np.zeros((total_x, total_y, 2))
|
||||
for x in range(total_x):
|
||||
for y in range(total_y):
|
||||
coords[x, y, 0] = x
|
||||
coords[x, y, 1] = y
|
||||
|
||||
for fault_index, fault_line in enumerate(self.fault_lines):
|
||||
start = self.fault_nodes[fault_line[0]]
|
||||
end = self.fault_nodes[fault_line[1]]
|
||||
vector = calc_min_vector(start, end)
|
||||
vector = vector / np.sqrt(np.sum(np.square(vector)))
|
||||
|
||||
perpendicular = np.array([vector[1], -vector[0]])
|
||||
|
||||
if len(plate_bordering_fault[fault_index]) == 2:
|
||||
for plate in plate_bordering_fault[fault_index]:
|
||||
vecs = coords - np.array(start)
|
||||
lengths = np.sqrt(np.sum(np.square(vecs), axis=2, keepdims=True))
|
||||
norm_vecs = vecs / lengths
|
||||
scalars = np.sum(norm_vecs * perpendicular, axis=2, keepdims=True)
|
||||
scalars[lengths == 0] = 0
|
||||
|
||||
end_vecs = coords - np.array(end)
|
||||
end_lengths = np.sqrt(np.sum(np.square(end_vecs), axis=2, keepdims=True))
|
||||
end_min_length = np.min(end_lengths[np.logical_and(plates == plate, end_lengths[:, :, 0] > 0)])
|
||||
end_min_length_scalar = scalars[np.logical_and(plates == plate, end_lengths[:, :, 0] == end_min_length)][0, 0]
|
||||
|
||||
min_length = np.min(lengths[np.logical_and(plates == plate, lengths[:, :, 0] > 0)])
|
||||
min_length_scalar = scalars[np.logical_and(plates == plate, lengths[:, :, 0] == min_length)][0, 0]
|
||||
|
||||
mean_scalar = np.mean(scalars[plates == plate])
|
||||
|
||||
if (min_length_scalar / abs(min_length_scalar)) == (end_min_length_scalar / abs(end_min_length_scalar)):
|
||||
scalar = min_length_scalar
|
||||
else:
|
||||
if (min_length_scalar / abs(min_length_scalar)) == (mean_scalar / abs(mean_scalar)):
|
||||
scalar = min_length_scalar
|
||||
else:
|
||||
scalar = end_min_length_scalar
|
||||
|
||||
directions[plates == plate, :2] += perpendicular * (scalar / abs(scalar))
|
||||
pass
|
||||
|
||||
|
||||
|
||||
|
||||
self.plates = plates
|
||||
self.directions = directions
|
||||
|
||||
def set_color(self, x: int, y: int, z: int, r: float, g: float, b: float):
|
||||
x = x % (self.chunk_size_x * self.chunk_n_x)
|
||||
y = y % (self.chunk_size_y * self.chunk_n_y)
|
||||
|
|
|
@ -4,6 +4,7 @@ from Objects.World import World
|
|||
class WorldProvider:
|
||||
def __init__(self, programs):
|
||||
self.world: World = World(10, 10, 10, 10, 10, 10, programs)
|
||||
self.world.generate()
|
||||
|
||||
def update(self):
|
||||
pass
|
||||
|
|
29
tests/test_FluidSimulator.py
Normal file
29
tests/test_FluidSimulator.py
Normal file
|
@ -0,0 +1,29 @@
|
|||
from FluidSim.FluidSimulator import FluidSimulator2D
|
||||
import numpy as np
|
||||
|
||||
|
||||
def test_stand_still():
|
||||
fs = FluidSimulator2D(50, 50)
|
||||
|
||||
fs.array.has_fluid[10, 10] = True
|
||||
|
||||
for i in range(100):
|
||||
fs.timestep(0)
|
||||
|
||||
assert fs.array.has_fluid[10, 10], "Fluid not on the same spot anymore"
|
||||
assert np.sum(fs.array.has_fluid * 1.0) == 1.0, "Fluid amount changed"
|
||||
|
||||
|
||||
def test_move_positive_x():
|
||||
fs = FluidSimulator2D(50, 50)
|
||||
|
||||
fs.array.has_fluid[10, 10] = True
|
||||
fs.array.u_x[10, 10] = 1.0
|
||||
fs.array.u_x[11, 10] = 1.0
|
||||
# fs.array.u_x[9, 10] = -1.0
|
||||
|
||||
for i in range(10):
|
||||
fs.timestep(0)
|
||||
assert np.sum(fs.array.has_fluid * 1.0) == 1.0, "Fluid amount changed"
|
||||
|
||||
assert fs.array.has_fluid[0, 10], "Fluid not on the right border"
|
22
tests/test_Staggered_Array.py
Normal file
22
tests/test_Staggered_Array.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
from FluidSim.StaggeredArray import StaggeredArray2D
|
||||
|
||||
|
||||
def test_staggered_array_2D():
|
||||
sa = StaggeredArray2D(10, 10)
|
||||
|
||||
for x in range(11):
|
||||
for y in range(10):
|
||||
sa.u_x[x, y] = y
|
||||
|
||||
for x in range(10):
|
||||
for y in range(11):
|
||||
sa.u_y[x, y] = x
|
||||
|
||||
ux, uy = sa.get_velocity_arrays()
|
||||
|
||||
for x in range(10):
|
||||
for y in range(10):
|
||||
ux2, uy2 = sa.get_velocity(x, y)
|
||||
|
||||
assert ux[x, y] == ux2, 'value output should be consistent!'
|
||||
assert uy[x, y] == uy2, 'value output should be consistent!'
|
Loading…
Add table
Reference in a new issue