refactor scene.rs into multiple files

This commit is contained in:
zomseffen 2025-01-08 12:30:54 +01:00
parent 694d93c0f3
commit 15a94c2f93
3 changed files with 711 additions and 692 deletions

View file

@ -1,673 +1,16 @@
use anyhow::Ok;
use vulkanalia::prelude::v1_0::*;
use anyhow::Result;
use cgmath::{vec2, vec3, Vector3};
use cgmath::Vector3;
use std::cell::RefCell;
use std::mem;
use std::rc::Rc;
use std::time::Instant;
use crate::app_data::AppData;
use crate::buffer;
use crate::primitives::rec_cuboid::Cuboid;
use crate::vertex;
use crate::primitives::cube::Cube;
use crate::primitives::quad::Quad;
use crate::primitives::drawable::Drawable;
use crate::scene::oct_tree::OctTree;
extern crate rand;
use rand::Rng;
const CHUNK_SIZE_EXPONENT: u32 = 4;
const CHUNK_SIZE: usize = (2 as usize).pow(CHUNK_SIZE_EXPONENT);
const MAX_TREE_DEPTH: usize = 2;
const MIN_CHUNK_SIZE: usize = CHUNK_SIZE / (2 as usize).pow(MAX_TREE_DEPTH as u32);
#[repr(C)]
#[derive(Clone, Debug, Default)]
pub struct Scene {
pub vertices: Vec<vertex::Vertex>,
pub sized_vertices: Vec<vertex::SizedVertex>,
pub rt_vertices: Vec<vertex::RTVertex>,
pub indices_cube: Vec<u32>,
pub indices_cuboid: Vec<u32>,
pub indices_rt: Vec<u32>,
pub vertex_buffer_cube: vk::Buffer,
pub vertex_buffer_memory_cube: vk::DeviceMemory,
pub index_buffer_cube: vk::Buffer,
pub index_buffer_memory_cube: vk::DeviceMemory,
pub vertex_buffer_cuboid: vk::Buffer,
pub vertex_buffer_memory_cuboid: vk::DeviceMemory,
pub index_buffer_cuboid: vk::Buffer,
pub index_buffer_memory_cuboid: vk::DeviceMemory,
pub vertex_buffer_quad: vk::Buffer,
pub vertex_buffer_memory_quad: vk::DeviceMemory,
pub index_buffer_quad: vk::Buffer,
pub index_buffer_memory_quad: vk::DeviceMemory,
pub rt_memory: Vec<u32>,
}
impl Scene {
pub unsafe fn prepare_data(&mut self, instance: &vulkanalia::Instance, device: &vulkanalia::Device, data: &mut AppData) -> Result<()> {
let mut rng = rand::thread_rng();
let grid_size = CHUNK_SIZE as i32;
// todo store the chunks somewhere (or only use them as intermediary for neighbouthood calculation idc)
let mut oct_tree: OctTree<Cube> = OctTree::create(CHUNK_SIZE)?;
for x_index in 0..grid_size {
for y_index in 0..grid_size {
let shade = (rng.gen_range(0..25) as f32) / 100.0;
let cube = Cube {
pos: vec3(x_index as f32, y_index as f32, 5.0),
color: vec3(shade, 1.0, shade),
tex_coord: vec2(0.0, 0.0)
};
oct_tree.set_cube(cube.clone());
}
}
let shade = (rng.gen_range(0..25) as f32) / 100.0;
let cube = Cube {
pos: vec3(10.0, 10.0, 10.0),
color: vec3(shade, 1.0, shade),
tex_coord: vec2(0.0, 0.0)
};
oct_tree.set_cube(cube.clone());
let mut empty_volumes: Vec<Rc<RefCell<EmptyVolume>>>;
(empty_volumes, _) = EmptyVolume::from_oct_tree(&oct_tree);
println!("number of empty volumes is {}", empty_volumes.len());
let oct_tree_iter = OctTreeIter::create(&oct_tree)?;
for item in oct_tree_iter {
let sized_index = self.sized_vertices.len();
let index = self.vertices.len();
match item {
Some(cube) => {
/*if (cube.pos.x + cube.pos.y) as usize % 2 == 0{
/**/
let cuboid = Cuboid {
pos: cube.pos,
color: cube.color,
tex_coord: cube.tex_coord,
size: Vector3 {x: 1.0, y: 1.0, z: 1.0},
};
cuboid.draw(&data.topology, sized_index, self);
}
else {
cube.draw(&data.topology, index, self);
}*/
cube.draw(&data.topology, index, self);
}
None => {}
}
}
let mut memory_index = 1; // zero should be the location for the overall length (also will be the invalid memory allocation for pointing to a nonexistant neighbor)
for volume in &empty_volumes {
volume.borrow_mut().memory_start = memory_index;
memory_index += volume.borrow().get_buffer_mem_size() as usize;
}
for volume in &empty_volumes {
let quads = volume.borrow().to_quads();
for quad in quads {
quad.draw(&data.topology, self.rt_vertices.len(), self);
}
}
println!("Memory size is {} kB, max indes is {}", memory_index * 32 / 8 /1024 + 1, memory_index);
let mut volume_vec = vec![memory_index as u32; memory_index];
for volume in &empty_volumes {
volume_vec = volume.borrow().insert_into_memory(volume_vec);
}
println!("volume_vec print {:?}", volume_vec);
let mut empty_count = 0;
for element in &volume_vec {
if *element == memory_index as u32 {
empty_count += 1;
}
}
println!("empty elements count is {}", empty_count);
self.rt_memory = volume_vec;
data.scene_rt_memory_size = (self.rt_memory.len() * 4) as u64; // size of the needed buffer size in bytes
if self.vertices.len() != 0 {
(self.vertex_buffer_cube, self.vertex_buffer_memory_cube) = buffer::create_vertex_buffer(instance, device, &data, &self.vertices)?;
(self.index_buffer_cube, self.index_buffer_memory_cube) = buffer::create_index_buffer(&instance, &device, &data, &self.indices_cube)?;
}
if self.sized_vertices.len() != 0 {
(self.vertex_buffer_cuboid, self.vertex_buffer_memory_cuboid) = buffer::create_vertex_buffer(instance, device, &data, &self.sized_vertices)?;
(self.index_buffer_cuboid, self.index_buffer_memory_cuboid) = buffer::create_index_buffer(&instance, &device, &data, &self.indices_cuboid)?;
}
if self.rt_vertices.len() != 0 {
(self.vertex_buffer_quad, self.vertex_buffer_memory_quad) = buffer::create_vertex_buffer(instance, device, &data, &self.rt_vertices)?;
(self.index_buffer_quad, self.index_buffer_memory_quad) = buffer::create_index_buffer(&instance, &device, &data, &self.indices_rt)?;
}
Ok(())
}
pub unsafe fn destroy(&mut self, device: &vulkanalia::Device) {
device.destroy_buffer(self.index_buffer_cube, None);
device.free_memory(self.index_buffer_memory_cube, None);
device.destroy_buffer(self.vertex_buffer_cube, None);
device.free_memory(self.vertex_buffer_memory_cube, None);
device.destroy_buffer(self.index_buffer_cuboid, None);
device.free_memory(self.index_buffer_memory_cuboid, None);
device.destroy_buffer(self.vertex_buffer_cuboid, None);
device.free_memory(self.vertex_buffer_memory_cuboid, None);
device.destroy_buffer(self.index_buffer_quad, None);
device.free_memory(self.index_buffer_memory_quad, None);
device.destroy_buffer(self.vertex_buffer_quad, None);
device.free_memory(self.vertex_buffer_memory_quad, None);
}
}
#[derive(Clone, Debug)]
#[allow(non_snake_case)]
struct OctTree<T> {
pub child_XYZ: Option<Rc<RefCell<Self>>>,
pub child_xYZ: Option<Rc<RefCell<Self>>>,
pub child_xyZ: Option<Rc<RefCell<Self>>>,
pub child_XyZ: Option<Rc<RefCell<Self>>>,
pub child_XYz: Option<Rc<RefCell<Self>>>,
pub child_xYz: Option<Rc<RefCell<Self>>>,
pub child_xyz: Option<Rc<RefCell<Self>>>,
pub child_Xyz: Option<Rc<RefCell<Self>>>,
pub blocks: Vec<Option<T>>,
size: usize,
}
#[warn(non_snake_case)]
impl OctTree<Cube> {
pub fn set_cube(&mut self, cube: Cube) {
let x = cube.pos.x as usize;
let y = cube.pos.y as usize;
let z = cube.pos.z as usize;
assert!(x < self.size, "x value out of range!");
assert!(y < self.size, "y value out of range!");
assert!(z < self.size, "z value out of range!");
self.set_element_internal(cube, x, y, z);
}
}
impl<T: Clone> OctTree<T> {
pub fn create(size: usize) -> Result<Self> {
let mut blocks: Vec<Option<T>> = vec![];
if size == MIN_CHUNK_SIZE {
for _ in 0..MIN_CHUNK_SIZE {
for _ in 0..MIN_CHUNK_SIZE {
for _ in 0..MIN_CHUNK_SIZE {
blocks.push(None);
}
}
}
}
Ok(Self {
child_XYZ: None,
child_xYZ: None,
child_xyZ: None,
child_XyZ: None,
child_XYz: None,
child_xYz: None,
child_xyz: None,
child_Xyz: None,
blocks: blocks,
size,
})
}
pub fn set_element(&mut self, element: T, x: usize, y: usize, z: usize) {
assert!(x < self.size, "x value out of range!");
assert!(y < self.size, "y value out of range!");
assert!(z < self.size, "z value out of range!");
self.set_element_internal(element, x, y, z);
}
fn set_element_internal(&mut self, element: T, x: usize, y: usize, z: usize) {
if self.size > MIN_CHUNK_SIZE {
let mid_point = self.size / 2;
if x >= mid_point {
if y >= mid_point {
if z >= mid_point {
match &self.child_XYZ {
Some(child) => {
child.borrow_mut().set_element_internal(element, x - mid_point, y - mid_point, z - mid_point);
},
None => {
let mut child = OctTree::create(self.size / 2).unwrap();
child.set_element_internal(element, x - mid_point, y - mid_point, z - mid_point);
self.child_XYZ = Some(Rc::new(RefCell::new(child)));
}
}
}
else {
match &self.child_XYz {
Some(child) => {
child.borrow_mut().set_element_internal(element, x - mid_point, y - mid_point, z);
},
None => {
let mut child = OctTree::create(self.size / 2).unwrap();
child.set_element_internal(element, x - mid_point, y - mid_point, z);
self.child_XYz = Some(Rc::new(RefCell::new(child)));
}
}
}
}
else {
if z >= mid_point {
match &self.child_XyZ {
Some(child) => {
child.borrow_mut().set_element_internal(element, x - mid_point, y, z - mid_point);
},
None => {
let mut child = OctTree::create(self.size / 2).unwrap();
child.set_element_internal(element, x - mid_point, y, z - mid_point);
self.child_XyZ = Some(Rc::new(RefCell::new(child)));
}
}
}
else {
match &self.child_Xyz {
Some(child) => {
child.borrow_mut().set_element_internal(element, x - mid_point, y, z);
},
None => {
let mut child = OctTree::create(self.size / 2).unwrap();
child.set_element_internal(element, x - mid_point, y, z);
self.child_Xyz = Some(Rc::new(RefCell::new(child)));
}
}
}
}
}
else {
if y >= mid_point {
if z >= mid_point {
match &self.child_xYZ {
Some(child) => {
child.borrow_mut().set_element_internal(element, x, y - mid_point, z - mid_point);
},
None => {
let mut child = OctTree::create(self.size / 2).unwrap();
child.set_element_internal(element, x, y - mid_point, z - mid_point);
self.child_xYZ = Some(Rc::new(RefCell::new(child)));
}
}
}
else {
match &self.child_xYz {
Some(child) => {
child.borrow_mut().set_element_internal(element, x, y - mid_point, z);
},
None => {
let mut child = OctTree::create(self.size / 2).unwrap();
child.set_element_internal(element, x, y - mid_point, z);
self.child_xYz = Some(Rc::new(RefCell::new(child)));
}
}
}
}
else {
if z >= mid_point {
match &self.child_xyZ {
Some(child) => {
child.borrow_mut().set_element_internal(element, x, y, z - mid_point);
},
None => {
let mut child = OctTree::create(self.size / 2).unwrap();
child.set_element_internal(element, x, y, z - mid_point);
self.child_xyZ = Some(Rc::new(RefCell::new(child)));
}
}
}
else {
match &self.child_xyz {
Some(child) => {
child.borrow_mut().set_element_internal(element, x, y, z);
},
None => {
let mut child = OctTree::create(self.size / 2).unwrap();
child.set_element_internal(element, x, y, z);
self.child_xyz = Some(Rc::new(RefCell::new(child)));
}
}
}
}
}
}
else {
self.blocks[z * MIN_CHUNK_SIZE * MIN_CHUNK_SIZE + y * MIN_CHUNK_SIZE + x] = Some(element);
}
}
pub fn clear_cube(&mut self, x: usize, y: usize, z: usize) {
assert!(x < self.size, "x value out of range!");
assert!(y < self.size, "y value out of range!");
assert!(z < self.size, "z value out of range!");
//self.blocks.remove(&vec3(x as u32, y as u32, z as u32));
self.clear_cube_internal(x, y, z)
}
fn clear_cube_internal(&mut self, x: usize, y: usize, z: usize) {
if self.size > MIN_CHUNK_SIZE {
let mid_point = self.size / 2;
if x >= mid_point {
if y >= mid_point {
if z >= mid_point {
match &self.child_XYZ {
Some(child) => {
child.borrow_mut().clear_cube_internal(x - mid_point, y - mid_point, z - mid_point);
},
None => {}
}
}
else {
match &self.child_XYz {
Some(child) => {
child.borrow_mut().clear_cube_internal(x - mid_point, y - mid_point, z);
},
None => {}
}
}
}
else {
if z >= mid_point {
match &self.child_XyZ {
Some(child) => {
child.borrow_mut().clear_cube_internal(x - mid_point, y, z - mid_point);
},
None => {}
}
}
else {
match &self.child_Xyz {
Some(child) => {
child.borrow_mut().clear_cube_internal(x - mid_point, y, z);
},
None => {}
}
}
}
}
else {
if y >= mid_point {
if z >= mid_point {
match &self.child_xYZ {
Some(child) => {
child.borrow_mut().clear_cube_internal(x, y - mid_point, z - mid_point);
},
None => {}
}
}
else {
match &self.child_xYz {
Some(child) => {
child.borrow_mut().clear_cube_internal(x, y - mid_point, z);
},
None => {}
}
}
}
else {
if z >= mid_point {
match &self.child_xyZ {
Some(child) => {
child.borrow_mut().clear_cube_internal(x, y, z - mid_point);
},
None => {}
}
}
else {
match &self.child_xyz {
Some(child) => {
child.borrow_mut().clear_cube_internal(x, y, z);
},
None => {}
}
}
}
}
}
else {
self.blocks[z * MIN_CHUNK_SIZE * MIN_CHUNK_SIZE + y * MIN_CHUNK_SIZE + x] = None;
}
}
pub fn get_element(&self, x: usize, y: usize, z: usize) -> Option<T> {
if x >= self.size || y >= self.size || z >= self.size {
return None
}
if self.size > MIN_CHUNK_SIZE {
let mid_point = self.size / 2;
if x >= mid_point {
if y >= mid_point {
if z >= mid_point {
match &self.child_XYZ {
Some(child) => {
child.borrow().get_element(x - mid_point, y - mid_point, z - mid_point)
},
None => None
}
}
else {
match &self.child_XYz {
Some(child) => {
child.borrow().get_element( x - mid_point, y - mid_point, z)
},
None => None
}
}
}
else {
if z >= mid_point {
match &self.child_XyZ {
Some(child) => {
child.borrow().get_element(x - mid_point, y, z - mid_point)
},
None => None
}
}
else {
match &self.child_Xyz {
Some(child) => {
child.borrow().get_element(x - mid_point, y, z)
},
None => None
}
}
}
}
else {
if y >= mid_point {
if z >= mid_point {
match &self.child_xYZ {
Some(child) => {
child.borrow().get_element(x, y - mid_point, z - mid_point)
},
None => None
}
}
else {
match &self.child_xYz {
Some(child) => {
child.borrow().get_element(x, y - mid_point, z)
},
None => None
}
}
}
else {
if z >= mid_point {
match &self.child_xyZ {
Some(child) => {
child.borrow().get_element(x, y, z - mid_point)
},
None => None
}
}
else {
match &self.child_xyz {
Some(child) => {
child.borrow().get_element(x, y, z)
},
None => None
}
}
}
}
}
else {
self.blocks[z * MIN_CHUNK_SIZE * MIN_CHUNK_SIZE + y * MIN_CHUNK_SIZE + x].clone()
}
}
}
struct OctTreeIter<'a> {
iter_x: usize,
iter_y: usize,
iter_z: usize,
todo: Vec<Rc<RefCell<OctTree<Cube>>>>,
chunk: &'a OctTree<Cube>
}
impl<'a> OctTreeIter<'a> {
pub fn create(chunk: &'a OctTree<Cube>) -> Result<Self> {
let mut out = Self {
iter_x: 0,
iter_y: 0,
iter_z: 0,
todo: vec![],
chunk
};
out.add_todo(&chunk);
Ok(out)
}
fn add_todo(&mut self, oct_tree: &OctTree<Cube>) {
match &oct_tree.child_XYZ {
Some(child) => {
self.todo.push(child.clone());
},
None => {},
};
match &oct_tree.child_xYZ {
Some(child) => {
self.todo.push(child.clone());
},
None => {},
};
match &oct_tree.child_xyZ {
Some(child) => {
self.todo.push(child.clone());
},
None => {},
};
match &oct_tree.child_XyZ {
Some(child) => {
self.todo.push(child.clone());
},
None => {},
};
match &oct_tree.child_XYz {
Some(child) => {
self.todo.push(child.clone());
},
None => {},
};
match &oct_tree.child_xYz {
Some(child) => {
self.todo.push(child.clone());
},
None => {},
};
match &oct_tree.child_xyz {
Some(child) => {
self.todo.push(child.clone());
},
None => {},
};
match &oct_tree.child_Xyz {
Some(child) => {
self.todo.push(child.clone());
},
None => {},
};
}
}
impl<'a> Iterator for OctTreeIter<'a> {
type Item = Option<Cube>;
fn next(&mut self) -> Option<Self::Item> {
if self.todo.len() != 0 {
while self.todo.last().unwrap().borrow().blocks.len() == 0 {
let oct_tree = self.todo.pop().unwrap();
self.add_todo(&oct_tree.borrow());
}
if self.iter_x < MIN_CHUNK_SIZE && self.iter_y < MIN_CHUNK_SIZE && self.iter_z < MIN_CHUNK_SIZE {
let result = self.todo.last().unwrap().borrow().blocks[self.iter_x + self.iter_y * MIN_CHUNK_SIZE + self.iter_z * MIN_CHUNK_SIZE * MIN_CHUNK_SIZE].clone();
self.iter_x += 1;
if self.iter_x >= MIN_CHUNK_SIZE {
self.iter_x = 0;
self.iter_y += 1;
}
if self.iter_y >= MIN_CHUNK_SIZE {
self.iter_y = 0;
self.iter_z += 1;
}
if self.iter_z == MIN_CHUNK_SIZE {
self.todo.pop();
self.iter_x = 0;
self.iter_y = 0;
self.iter_z = 0;
}
return Some(result)
}
}
self.iter_x = 0;
self.iter_y = 0;
self.iter_z = 0;
self.add_todo(&self.chunk);
None
}
}
struct EmptyVolume {
pub struct EmptyVolume {
pub memory_start: usize,
pub size_x: usize,
@ -1190,7 +533,7 @@ impl EmptyVolume {
(volumes, neighbors)
}
fn to_quads(&self) -> Vec<Quad> {
pub fn to_quads(&self) -> Vec<Quad> {
let mut quads = vec![];
let float_pos = Vector3 {x: self.position.x as f32, y: self.position.y as f32, z: self.position.z as f32};
//bottom sides of the volumes, top side of the block
@ -1671,34 +1014,4 @@ impl EmptyVolume {
println!("last memory index of volume was {}, equivalent to {}kB", mem_index, mem_index * 32 / 8 / 1024);
v
}
}
#[cfg(test)]
mod test {
use cgmath::Vector2;
use super::*;
#[test]
fn test_oct_tree(){
let mut test_tree: OctTree<Cube> = OctTree::create(512).unwrap();
let test_cube = Cube{color: Vector3 { x: 1.0, y: 0.0, z: 0.0 }, pos: Vector3 { x: 5.0, y: 2.0, z: 10.0 }, tex_coord: Vector2{x: 0.0, y: 0.0}};
test_tree.set_cube(test_cube.clone());
let cube_result = test_tree.get_element(5, 2, 10).unwrap();
let cube_result2 = test_tree.get_element(300, 2, 10);
assert_eq!(test_cube, cube_result);
assert_eq!(cube_result2, None);
let test_iter = OctTreeIter::create(&test_tree).unwrap();
let mut count = 0;
for result in test_iter {
if let Some(_) = result {
count += 1;
}
}
assert_eq!(count, 1);
}
}
}

180
src/scene/mod.rs Normal file
View file

@ -0,0 +1,180 @@
mod oct_tree;
mod empty_volume;
use anyhow::Ok;
use vulkanalia::prelude::v1_0::*;
use anyhow::Result;
use cgmath::{vec2, vec3};
use std::cell::RefCell;
use std::rc::Rc;
use crate::app_data::AppData;
use crate::buffer;
use crate::vertex;
use crate::primitives::cube::Cube;
use crate::primitives::drawable::Drawable;
use crate::scene::oct_tree::{OctTree, OctTreeIter, CHUNK_SIZE};
use crate::scene::empty_volume::EmptyVolume;
extern crate rand;
use rand::Rng;
#[repr(C)]
#[derive(Clone, Debug, Default)]
pub struct Scene {
pub vertices: Vec<vertex::Vertex>,
pub sized_vertices: Vec<vertex::SizedVertex>,
pub rt_vertices: Vec<vertex::RTVertex>,
pub indices_cube: Vec<u32>,
pub indices_cuboid: Vec<u32>,
pub indices_rt: Vec<u32>,
pub vertex_buffer_cube: vk::Buffer,
pub vertex_buffer_memory_cube: vk::DeviceMemory,
pub index_buffer_cube: vk::Buffer,
pub index_buffer_memory_cube: vk::DeviceMemory,
pub vertex_buffer_cuboid: vk::Buffer,
pub vertex_buffer_memory_cuboid: vk::DeviceMemory,
pub index_buffer_cuboid: vk::Buffer,
pub index_buffer_memory_cuboid: vk::DeviceMemory,
pub vertex_buffer_quad: vk::Buffer,
pub vertex_buffer_memory_quad: vk::DeviceMemory,
pub index_buffer_quad: vk::Buffer,
pub index_buffer_memory_quad: vk::DeviceMemory,
pub rt_memory: Vec<u32>,
}
impl Scene {
pub unsafe fn prepare_data(&mut self, instance: &vulkanalia::Instance, device: &vulkanalia::Device, data: &mut AppData) -> Result<()> {
let mut rng = rand::thread_rng();
let grid_size = CHUNK_SIZE as i32;
// todo store the chunks somewhere (or only use them as intermediary for neighbouthood calculation idc)
let mut oct_tree: OctTree<Cube> = OctTree::create(CHUNK_SIZE)?;
for x_index in 0..grid_size {
for y_index in 0..grid_size {
let shade = (rng.gen_range(0..25) as f32) / 100.0;
let cube = Cube {
pos: vec3(x_index as f32, y_index as f32, 5.0),
color: vec3(shade, 1.0, shade),
tex_coord: vec2(0.0, 0.0)
};
oct_tree.set_cube(cube.clone());
}
}
let shade = (rng.gen_range(0..25) as f32) / 100.0;
let cube = Cube {
pos: vec3(10.0, 10.0, 10.0),
color: vec3(shade, 1.0, shade),
tex_coord: vec2(0.0, 0.0)
};
oct_tree.set_cube(cube.clone());
let mut empty_volumes: Vec<Rc<RefCell<EmptyVolume>>>;
(empty_volumes, _) = EmptyVolume::from_oct_tree(&oct_tree);
println!("number of empty volumes is {}", empty_volumes.len());
let oct_tree_iter = OctTreeIter::create(&oct_tree)?;
for item in oct_tree_iter {
let sized_index = self.sized_vertices.len();
let index = self.vertices.len();
match item {
Some(cube) => {
/*if (cube.pos.x + cube.pos.y) as usize % 2 == 0{
/**/
let cuboid = Cuboid {
pos: cube.pos,
color: cube.color,
tex_coord: cube.tex_coord,
size: Vector3 {x: 1.0, y: 1.0, z: 1.0},
};
cuboid.draw(&data.topology, sized_index, self);
}
else {
cube.draw(&data.topology, index, self);
}*/
cube.draw(&data.topology, index, self);
}
None => {}
}
}
let mut memory_index = 1; // zero should be the location for the overall length (also will be the invalid memory allocation for pointing to a nonexistant neighbor)
for volume in &empty_volumes {
volume.borrow_mut().memory_start = memory_index;
memory_index += volume.borrow().get_buffer_mem_size() as usize;
}
for volume in &empty_volumes {
let quads = volume.borrow().to_quads();
for quad in quads {
quad.draw(&data.topology, self.rt_vertices.len(), self);
}
}
println!("Memory size is {} kB, max indes is {}", memory_index * 32 / 8 /1024 + 1, memory_index);
let mut volume_vec = vec![memory_index as u32; memory_index];
for volume in &empty_volumes {
volume_vec = volume.borrow().insert_into_memory(volume_vec);
}
println!("volume_vec print {:?}", volume_vec);
let mut empty_count = 0;
for element in &volume_vec {
if *element == memory_index as u32 {
empty_count += 1;
}
}
println!("empty elements count is {}", empty_count);
self.rt_memory = volume_vec;
data.scene_rt_memory_size = (self.rt_memory.len() * 4) as u64; // size of the needed buffer size in bytes
if self.vertices.len() != 0 {
(self.vertex_buffer_cube, self.vertex_buffer_memory_cube) = buffer::create_vertex_buffer(instance, device, &data, &self.vertices)?;
(self.index_buffer_cube, self.index_buffer_memory_cube) = buffer::create_index_buffer(&instance, &device, &data, &self.indices_cube)?;
}
if self.sized_vertices.len() != 0 {
(self.vertex_buffer_cuboid, self.vertex_buffer_memory_cuboid) = buffer::create_vertex_buffer(instance, device, &data, &self.sized_vertices)?;
(self.index_buffer_cuboid, self.index_buffer_memory_cuboid) = buffer::create_index_buffer(&instance, &device, &data, &self.indices_cuboid)?;
}
if self.rt_vertices.len() != 0 {
(self.vertex_buffer_quad, self.vertex_buffer_memory_quad) = buffer::create_vertex_buffer(instance, device, &data, &self.rt_vertices)?;
(self.index_buffer_quad, self.index_buffer_memory_quad) = buffer::create_index_buffer(&instance, &device, &data, &self.indices_rt)?;
}
Ok(())
}
pub unsafe fn destroy(&mut self, device: &vulkanalia::Device) {
device.destroy_buffer(self.index_buffer_cube, None);
device.free_memory(self.index_buffer_memory_cube, None);
device.destroy_buffer(self.vertex_buffer_cube, None);
device.free_memory(self.vertex_buffer_memory_cube, None);
device.destroy_buffer(self.index_buffer_cuboid, None);
device.free_memory(self.index_buffer_memory_cuboid, None);
device.destroy_buffer(self.vertex_buffer_cuboid, None);
device.free_memory(self.vertex_buffer_memory_cuboid, None);
device.destroy_buffer(self.index_buffer_quad, None);
device.free_memory(self.index_buffer_memory_quad, None);
device.destroy_buffer(self.vertex_buffer_quad, None);
device.free_memory(self.vertex_buffer_memory_quad, None);
}
}

526
src/scene/oct_tree.rs Normal file
View file

@ -0,0 +1,526 @@
use anyhow::Ok;
use anyhow::Result;
use std::cell::RefCell;
use std::rc::Rc;
use crate::primitives::cube::Cube;
extern crate rand;
pub const CHUNK_SIZE_EXPONENT: u32 = 4;
pub const CHUNK_SIZE: usize = (2 as usize).pow(CHUNK_SIZE_EXPONENT);
pub const MAX_TREE_DEPTH: usize = 2;
pub const MIN_CHUNK_SIZE: usize = CHUNK_SIZE / (2 as usize).pow(MAX_TREE_DEPTH as u32);
#[derive(Clone, Debug)]
#[allow(non_snake_case)]
pub struct OctTree<T> {
pub child_XYZ: Option<Rc<RefCell<Self>>>,
pub child_xYZ: Option<Rc<RefCell<Self>>>,
pub child_xyZ: Option<Rc<RefCell<Self>>>,
pub child_XyZ: Option<Rc<RefCell<Self>>>,
pub child_XYz: Option<Rc<RefCell<Self>>>,
pub child_xYz: Option<Rc<RefCell<Self>>>,
pub child_xyz: Option<Rc<RefCell<Self>>>,
pub child_Xyz: Option<Rc<RefCell<Self>>>,
pub blocks: Vec<Option<T>>,
pub size: usize,
}
#[warn(non_snake_case)]
impl OctTree<Cube> {
pub fn set_cube(&mut self, cube: Cube) {
let x = cube.pos.x as usize;
let y = cube.pos.y as usize;
let z = cube.pos.z as usize;
assert!(x < self.size, "x value out of range!");
assert!(y < self.size, "y value out of range!");
assert!(z < self.size, "z value out of range!");
self.set_element_internal(cube, x, y, z);
}
}
impl<T: Clone> OctTree<T> {
pub fn create(size: usize) -> Result<Self> {
let mut blocks: Vec<Option<T>> = vec![];
if size == MIN_CHUNK_SIZE {
for _ in 0..MIN_CHUNK_SIZE {
for _ in 0..MIN_CHUNK_SIZE {
for _ in 0..MIN_CHUNK_SIZE {
blocks.push(None);
}
}
}
}
Ok(Self {
child_XYZ: None,
child_xYZ: None,
child_xyZ: None,
child_XyZ: None,
child_XYz: None,
child_xYz: None,
child_xyz: None,
child_Xyz: None,
blocks: blocks,
size,
})
}
pub fn set_element(&mut self, element: T, x: usize, y: usize, z: usize) {
assert!(x < self.size, "x value out of range!");
assert!(y < self.size, "y value out of range!");
assert!(z < self.size, "z value out of range!");
self.set_element_internal(element, x, y, z);
}
fn set_element_internal(&mut self, element: T, x: usize, y: usize, z: usize) {
if self.size > MIN_CHUNK_SIZE {
let mid_point = self.size / 2;
if x >= mid_point {
if y >= mid_point {
if z >= mid_point {
match &self.child_XYZ {
Some(child) => {
child.borrow_mut().set_element_internal(element, x - mid_point, y - mid_point, z - mid_point);
},
None => {
let mut child = OctTree::create(self.size / 2).unwrap();
child.set_element_internal(element, x - mid_point, y - mid_point, z - mid_point);
self.child_XYZ = Some(Rc::new(RefCell::new(child)));
}
}
}
else {
match &self.child_XYz {
Some(child) => {
child.borrow_mut().set_element_internal(element, x - mid_point, y - mid_point, z);
},
None => {
let mut child = OctTree::create(self.size / 2).unwrap();
child.set_element_internal(element, x - mid_point, y - mid_point, z);
self.child_XYz = Some(Rc::new(RefCell::new(child)));
}
}
}
}
else {
if z >= mid_point {
match &self.child_XyZ {
Some(child) => {
child.borrow_mut().set_element_internal(element, x - mid_point, y, z - mid_point);
},
None => {
let mut child = OctTree::create(self.size / 2).unwrap();
child.set_element_internal(element, x - mid_point, y, z - mid_point);
self.child_XyZ = Some(Rc::new(RefCell::new(child)));
}
}
}
else {
match &self.child_Xyz {
Some(child) => {
child.borrow_mut().set_element_internal(element, x - mid_point, y, z);
},
None => {
let mut child = OctTree::create(self.size / 2).unwrap();
child.set_element_internal(element, x - mid_point, y, z);
self.child_Xyz = Some(Rc::new(RefCell::new(child)));
}
}
}
}
}
else {
if y >= mid_point {
if z >= mid_point {
match &self.child_xYZ {
Some(child) => {
child.borrow_mut().set_element_internal(element, x, y - mid_point, z - mid_point);
},
None => {
let mut child = OctTree::create(self.size / 2).unwrap();
child.set_element_internal(element, x, y - mid_point, z - mid_point);
self.child_xYZ = Some(Rc::new(RefCell::new(child)));
}
}
}
else {
match &self.child_xYz {
Some(child) => {
child.borrow_mut().set_element_internal(element, x, y - mid_point, z);
},
None => {
let mut child = OctTree::create(self.size / 2).unwrap();
child.set_element_internal(element, x, y - mid_point, z);
self.child_xYz = Some(Rc::new(RefCell::new(child)));
}
}
}
}
else {
if z >= mid_point {
match &self.child_xyZ {
Some(child) => {
child.borrow_mut().set_element_internal(element, x, y, z - mid_point);
},
None => {
let mut child = OctTree::create(self.size / 2).unwrap();
child.set_element_internal(element, x, y, z - mid_point);
self.child_xyZ = Some(Rc::new(RefCell::new(child)));
}
}
}
else {
match &self.child_xyz {
Some(child) => {
child.borrow_mut().set_element_internal(element, x, y, z);
},
None => {
let mut child = OctTree::create(self.size / 2).unwrap();
child.set_element_internal(element, x, y, z);
self.child_xyz = Some(Rc::new(RefCell::new(child)));
}
}
}
}
}
}
else {
self.blocks[z * MIN_CHUNK_SIZE * MIN_CHUNK_SIZE + y * MIN_CHUNK_SIZE + x] = Some(element);
}
}
pub fn clear_cube(&mut self, x: usize, y: usize, z: usize) {
assert!(x < self.size, "x value out of range!");
assert!(y < self.size, "y value out of range!");
assert!(z < self.size, "z value out of range!");
//self.blocks.remove(&vec3(x as u32, y as u32, z as u32));
self.clear_cube_internal(x, y, z)
}
fn clear_cube_internal(&mut self, x: usize, y: usize, z: usize) {
if self.size > MIN_CHUNK_SIZE {
let mid_point = self.size / 2;
if x >= mid_point {
if y >= mid_point {
if z >= mid_point {
match &self.child_XYZ {
Some(child) => {
child.borrow_mut().clear_cube_internal(x - mid_point, y - mid_point, z - mid_point);
},
None => {}
}
}
else {
match &self.child_XYz {
Some(child) => {
child.borrow_mut().clear_cube_internal(x - mid_point, y - mid_point, z);
},
None => {}
}
}
}
else {
if z >= mid_point {
match &self.child_XyZ {
Some(child) => {
child.borrow_mut().clear_cube_internal(x - mid_point, y, z - mid_point);
},
None => {}
}
}
else {
match &self.child_Xyz {
Some(child) => {
child.borrow_mut().clear_cube_internal(x - mid_point, y, z);
},
None => {}
}
}
}
}
else {
if y >= mid_point {
if z >= mid_point {
match &self.child_xYZ {
Some(child) => {
child.borrow_mut().clear_cube_internal(x, y - mid_point, z - mid_point);
},
None => {}
}
}
else {
match &self.child_xYz {
Some(child) => {
child.borrow_mut().clear_cube_internal(x, y - mid_point, z);
},
None => {}
}
}
}
else {
if z >= mid_point {
match &self.child_xyZ {
Some(child) => {
child.borrow_mut().clear_cube_internal(x, y, z - mid_point);
},
None => {}
}
}
else {
match &self.child_xyz {
Some(child) => {
child.borrow_mut().clear_cube_internal(x, y, z);
},
None => {}
}
}
}
}
}
else {
self.blocks[z * MIN_CHUNK_SIZE * MIN_CHUNK_SIZE + y * MIN_CHUNK_SIZE + x] = None;
}
}
pub fn get_element(&self, x: usize, y: usize, z: usize) -> Option<T> {
if x >= self.size || y >= self.size || z >= self.size {
return None
}
if self.size > MIN_CHUNK_SIZE {
let mid_point = self.size / 2;
if x >= mid_point {
if y >= mid_point {
if z >= mid_point {
match &self.child_XYZ {
Some(child) => {
child.borrow().get_element(x - mid_point, y - mid_point, z - mid_point)
},
None => None
}
}
else {
match &self.child_XYz {
Some(child) => {
child.borrow().get_element( x - mid_point, y - mid_point, z)
},
None => None
}
}
}
else {
if z >= mid_point {
match &self.child_XyZ {
Some(child) => {
child.borrow().get_element(x - mid_point, y, z - mid_point)
},
None => None
}
}
else {
match &self.child_Xyz {
Some(child) => {
child.borrow().get_element(x - mid_point, y, z)
},
None => None
}
}
}
}
else {
if y >= mid_point {
if z >= mid_point {
match &self.child_xYZ {
Some(child) => {
child.borrow().get_element(x, y - mid_point, z - mid_point)
},
None => None
}
}
else {
match &self.child_xYz {
Some(child) => {
child.borrow().get_element(x, y - mid_point, z)
},
None => None
}
}
}
else {
if z >= mid_point {
match &self.child_xyZ {
Some(child) => {
child.borrow().get_element(x, y, z - mid_point)
},
None => None
}
}
else {
match &self.child_xyz {
Some(child) => {
child.borrow().get_element(x, y, z)
},
None => None
}
}
}
}
}
else {
self.blocks[z * MIN_CHUNK_SIZE * MIN_CHUNK_SIZE + y * MIN_CHUNK_SIZE + x].clone()
}
}
}
pub struct OctTreeIter<'a> {
iter_x: usize,
iter_y: usize,
iter_z: usize,
todo: Vec<Rc<RefCell<OctTree<Cube>>>>,
chunk: &'a OctTree<Cube>
}
impl<'a> OctTreeIter<'a> {
pub fn create(chunk: &'a OctTree<Cube>) -> Result<Self> {
let mut out = Self {
iter_x: 0,
iter_y: 0,
iter_z: 0,
todo: vec![],
chunk
};
out.add_todo(&chunk);
Ok(out)
}
fn add_todo(&mut self, oct_tree: &OctTree<Cube>) {
match &oct_tree.child_XYZ {
Some(child) => {
self.todo.push(child.clone());
},
None => {},
};
match &oct_tree.child_xYZ {
Some(child) => {
self.todo.push(child.clone());
},
None => {},
};
match &oct_tree.child_xyZ {
Some(child) => {
self.todo.push(child.clone());
},
None => {},
};
match &oct_tree.child_XyZ {
Some(child) => {
self.todo.push(child.clone());
},
None => {},
};
match &oct_tree.child_XYz {
Some(child) => {
self.todo.push(child.clone());
},
None => {},
};
match &oct_tree.child_xYz {
Some(child) => {
self.todo.push(child.clone());
},
None => {},
};
match &oct_tree.child_xyz {
Some(child) => {
self.todo.push(child.clone());
},
None => {},
};
match &oct_tree.child_Xyz {
Some(child) => {
self.todo.push(child.clone());
},
None => {},
};
}
}
impl<'a> Iterator for OctTreeIter<'a> {
type Item = Option<Cube>;
fn next(&mut self) -> Option<Self::Item> {
if self.todo.len() != 0 {
while self.todo.last().unwrap().borrow().blocks.len() == 0 {
let oct_tree = self.todo.pop().unwrap();
self.add_todo(&oct_tree.borrow());
}
if self.iter_x < MIN_CHUNK_SIZE && self.iter_y < MIN_CHUNK_SIZE && self.iter_z < MIN_CHUNK_SIZE {
let result = self.todo.last().unwrap().borrow().blocks[self.iter_x + self.iter_y * MIN_CHUNK_SIZE + self.iter_z * MIN_CHUNK_SIZE * MIN_CHUNK_SIZE].clone();
self.iter_x += 1;
if self.iter_x >= MIN_CHUNK_SIZE {
self.iter_x = 0;
self.iter_y += 1;
}
if self.iter_y >= MIN_CHUNK_SIZE {
self.iter_y = 0;
self.iter_z += 1;
}
if self.iter_z == MIN_CHUNK_SIZE {
self.todo.pop();
self.iter_x = 0;
self.iter_y = 0;
self.iter_z = 0;
}
return Some(result)
}
}
self.iter_x = 0;
self.iter_y = 0;
self.iter_z = 0;
self.add_todo(&self.chunk);
None
}
}
#[cfg(test)]
mod test {
use cgmath::{Vector2, Vector3};
use super::*;
#[test]
fn test_oct_tree(){
let mut test_tree: OctTree<Cube> = OctTree::create(512).unwrap();
let test_cube = Cube{color: Vector3 { x: 1.0, y: 0.0, z: 0.0 }, pos: Vector3 { x: 5.0, y: 2.0, z: 10.0 }, tex_coord: Vector2{x: 0.0, y: 0.0}};
test_tree.set_cube(test_cube.clone());
let cube_result = test_tree.get_element(5, 2, 10).unwrap();
let cube_result2 = test_tree.get_element(300, 2, 10);
assert_eq!(test_cube, cube_result);
assert_eq!(cube_result2, None);
let test_iter = OctTreeIter::create(&test_tree).unwrap();
let mut count = 0;
for result in test_iter {
if let Some(_) = result {
count += 1;
}
}
assert_eq!(count, 1);
}
}