halfway to raytracing

This commit is contained in:
zomseffen 2025-01-11 14:12:24 +01:00
parent 15a94c2f93
commit 3f4656939c
7 changed files with 222 additions and 42 deletions

Binary file not shown.

View file

@ -18,11 +18,11 @@ uvec4 unpack_color(uint val) {
uint val3 = (val << 16) >> 24;
uint val4 = (val << 24) >> 24;
return uvec4(val1, val2, val3, val4);
return uvec4(val4, val3, val2, val1);
}
uvec4 sample_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) {
uint array_descr_start = volume_start + 3;
uint sample_neighbor_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) {
uint array_descr_start = volume_start + 6 + scene_info.infos[0];
uint color_array_start = array_descr_start + 24;
uint top_color_size_u = scene_info.infos[array_descr_start];
@ -46,7 +46,7 @@ uvec4 sample_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) {
uint top_neighbor_size_u = scene_info.infos[array_descr_start + 12];
uint top_neighbor_size_v = scene_info.infos[array_descr_start + 13];
/*uint bottom_neighbor_size_u = scene_info.infos[array_descr_start + 14];
uint bottom_neighbor_size_u = scene_info.infos[array_descr_start + 14];
uint bottom_neighbor_size_v = scene_info.infos[array_descr_start + 15];
uint left_neighbor_size_u = scene_info.infos[array_descr_start + 16];
@ -59,7 +59,58 @@ uvec4 sample_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) {
uint front_neighbor_size_v = scene_info.infos[array_descr_start + 21];
uint back_neighbor_size_u = scene_info.infos[array_descr_start + 22];
uint back_neighbor_size_v = scene_info.infos[array_descr_start + 23];*/
uint back_neighbor_size_v = scene_info.infos[array_descr_start + 23];
uint top_color_size = top_color_size_u * top_color_size_v;
uint bottom_color_size = bottom_color_size_u * bottom_color_size_v;
uint left_color_size = left_color_size_u * left_color_size_v;
uint right_color_size = right_color_size_u * right_color_size_v;
uint front_color_size = front_color_size_u * front_color_size_v;
uint back_color_size = back_color_size_u * back_color_size_v;
uint color_array_end = color_array_start + top_color_size + bottom_color_size + left_color_size + right_color_size + front_color_size + back_color_size;
uint top_neighbor_size = top_neighbor_size_u * top_neighbor_size_v;
uint bottom_neighbor_size = bottom_neighbor_size_u * bottom_neighbor_size_v;
uint left_neighbor_size = left_neighbor_size_u * left_neighbor_size_v;
uint right_neighbor_size = right_neighbor_size_u * right_neighbor_size_v;
uint front_neighbor_size = front_neighbor_size_u * front_neighbor_size_v;
uint back_neighbor_size = back_neighbor_size_u * back_neighbor_size_v;
// maybe do an array solution for this as well
uint array_start = color_array_end + uint(f > 0) * top_neighbor_size + uint(f > 1) * bottom_neighbor_size + uint(f > 2) * left_neighbor_size + uint(f > 3) * right_neighbor_size + uint(f > 4) * front_neighbor_size;
uint us[6] = {top_neighbor_size_u, bottom_neighbor_size_u, left_neighbor_size_u, right_neighbor_size_u, front_neighbor_size_u, back_neighbor_size_u};
uint vs[6] = {top_neighbor_size_v, bottom_neighbor_size_v, left_neighbor_size_v, right_neighbor_size_v, front_neighbor_size_v, back_neighbor_size_v};
uint u_size = us[f];
uint v_size = vs[f];
uint value = scene_info.infos[array_start + raster_pos.x * v_size * uint(u_size > 1) + raster_pos.y * uint(v_size > 1)];
return value;
}
uvec4 sample_color_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) {
uint array_descr_start = volume_start + 6 + scene_info.infos[0];
uint color_array_start = array_descr_start + 24;
uint top_color_size_u = scene_info.infos[array_descr_start];
uint top_color_size_v = scene_info.infos[array_descr_start + 1];
uint bottom_color_size_u = scene_info.infos[array_descr_start + 2];
uint bottom_color_size_v = scene_info.infos[array_descr_start + 3];
uint left_color_size_u = scene_info.infos[array_descr_start + 4];
uint left_color_size_v = scene_info.infos[array_descr_start + 5];
uint right_color_size_u = scene_info.infos[array_descr_start + 6];
uint right_color_size_v = scene_info.infos[array_descr_start + 7];
uint front_color_size_u = scene_info.infos[array_descr_start + 8];
uint front_color_size_v = scene_info.infos[array_descr_start + 9];
uint back_color_size_u = scene_info.infos[array_descr_start + 10];
uint back_color_size_v = scene_info.infos[array_descr_start + 11];
uint top_neighbor_size_u = scene_info.infos[array_descr_start + 12];
uint top_neighbor_size_v = scene_info.infos[array_descr_start + 13];
uint top_size = top_color_size_u * top_color_size_v;
uint bottom_size = bottom_color_size_u * bottom_color_size_v;
@ -74,21 +125,64 @@ uvec4 sample_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) {
uint vs[6] = {top_color_size_v, bottom_color_size_v, left_color_size_v, right_color_size_v, front_color_size_v, back_color_size_v};
uint u_size = us[f];
uint v_size = vs[f];
uint value = scene_info.infos[array_start + raster_pos.x * v_size + raster_pos.y];
if (top_color_size_v == 0) {
return uvec4(255, 0, 0, 255);
uint value = scene_info.infos[array_start + raster_pos.x * v_size * uint(u_size > 1) + raster_pos.y * uint(v_size > 1)];
return unpack_color(value);
}
return unpack_color(value);
vec3 get_light_position(uint light_index) {
return vec3(float(scene_info.infos[light_index]), float(scene_info.infos[light_index + 1]), float(scene_info.infos[light_index + 2]));
}
vec4 get_light_color(uint light_index) {
return vec4(float(scene_info.infos[light_index + 3]) / 255.0, float(scene_info.infos[light_index + 4]) / 255.0, float(scene_info.infos[light_index + 5]) / 255.0, 1.0);
}
void main() {
uint max_length = scene_info.infos[0];
uint last = scene_info.infos[max_length];
uvec4 color_roughness = sample_from_scene_info(fragVolumeStart, fragRasterPos, facing);
outColor = vec4(float(color_roughness.x) / 255.0, float(color_roughness.y) / 255.0, float(color_roughness.z) / 255.0, 1);
uvec4 color_roughness = sample_color_from_scene_info(fragVolumeStart, fragRasterPos, facing);
vec4 color_sample = vec4(float(color_roughness.x) / 255.0, float(color_roughness.y) / 255.0, float(color_roughness.z) / 255.0, 1);
uint max_light_num = scene_info.infos[0];
uint light_num = 0;
uint volume_index = fragVolumeStart;
uint light_index = scene_info.infos[fragVolumeStart + 3];
vec3 light_direction = get_light_position(light_index) - origPosition;
vec4 light_color = get_light_color(light_index);
bool x_pos = light_direction.x > 0.0;
bool x_null = light_direction.x == 0.0;
bool y_pos = light_direction.y > 0.0;
bool y_null = light_direction.y == 0.0;
bool z_pos = light_direction.z > 0.0;
bool z_null = light_direction.z == 0.0;
uint max_iterations = max_light_num * 20;
for (int i = 0; i < max_iterations; i++) {
float x_border = float(scene_info.infos[volume_index + 0] + scene_info.infos[volume_index + 3] * uint(x_pos));
float y_border = float(scene_info.infos[volume_index + 1] + scene_info.infos[volume_index + 4] * uint(y_pos));
float z_border = float(scene_info.infos[volume_index + 2] + scene_info.infos[volume_index + 5] * uint(z_pos));
// 2 is way behind the light position and should result in no collision being detected
float x_factor = 2.0;
float y_factor = 2.0;
float z_factor = 2.0;
if (!x_null) {
x_factor = (x_border - origPosition.x) / light_direction.x;
}
if (!y_null) {
float y_factor = (y_border - origPosition.y) / light_direction.y;
}
if (!z_null) {
float z_factor = (z_border - origPosition.z) / light_direction.z;
}
}
outColor = color_sample;
/*if (scene_info.infos[1] == 16) {
outColor = vec4(0, 1, 0, 1);

View file

@ -60,4 +60,5 @@ pub struct AppData {
pub topology: vk::PrimitiveTopology,
pub scene_rt_memory_size: u64,
pub num_lights_per_volume: u32,
}

View file

@ -178,6 +178,7 @@ impl App {
let entry = Entry::new(loader).map_err(|b| anyhow!("{}", b))?;
let mut data = app_data::AppData::default();
data.use_geometry_shader = false;
data.num_lights_per_volume = 1;
let mut scene_handler = scene::Scene::default();
//load_model::load_model(&mut data)?;

View file

@ -10,6 +10,8 @@ use crate::primitives::cube::Cube;
use crate::primitives::quad::Quad;
use crate::scene::oct_tree::OctTree;
use super::light::PointLight;
pub struct EmptyVolume {
pub memory_start: usize,
@ -47,7 +49,7 @@ impl EmptyVolume {
self.position[1] + self.size_y > pos[1] && pos[1] >= self.position[1] &&
self.position[2] + self.size_z > pos[2] && pos[2] >= self.position[2]
}
// MARK: From Oct Tree
pub fn from_oct_tree(tree: &OctTree<Cube>) -> (Vec<Rc<RefCell<EmptyVolume>>>, OctTree<Rc<RefCell<EmptyVolume>>>) {
// todo: ppotentially use a child exist check while going through the oct tree to find some obvios starting empty volumes. Will still need to check for possible expansions though
let mut volumes: Vec<Rc<RefCell<EmptyVolume>>> = vec![];
@ -80,6 +82,7 @@ impl EmptyVolume {
}
println!("new starting pos: {}, {}, {}", x_index, y_index, z_index);
println!("start growing volume x");
// MARK: Start new Volume
let mut x_size = 0;
let mut grow = true;
while grow {
@ -160,7 +163,7 @@ impl EmptyVolume {
neighbor_front: vec![],
};
println!("adding neighbor references");
//fill in info in the neighbor octtree
// MARK: fill in info in the neighbor octtree
let reference = Rc::new(RefCell::new(new_volume));
for x in 0..x_size+1 {
for y in 0..y_size+1 {
@ -200,7 +203,7 @@ impl EmptyVolume {
let x_max_pos = reference.borrow().position.x + reference.borrow().size_x;
let y_max_pos = reference.borrow().position.y + reference.borrow().size_y;
let z_max_pos = reference.borrow().position.z + reference.borrow().size_z;
// bottom face of the volume
// MARK: bottom face of the volume
let mut bottom_colors = vec![];
let mut bottom_roughness = vec![];
let mut bottom_elements_num = 0;
@ -226,7 +229,7 @@ impl EmptyVolume {
reference.borrow_mut().color_bottom= vec![];
reference.borrow_mut().roughness_bottom= vec![];
}
// top face of the volume
// MARK: top face of the volume
let mut top_colors = vec![];
let mut top_roughness = vec![];
let mut top_elements_num = 0;
@ -253,7 +256,7 @@ impl EmptyVolume {
reference.borrow_mut().roughness_top= vec![];
}
// back face of the volume
// MARK: back face of the volume
let mut back_colors = vec![];
let mut back_roughness = vec![];
let mut back_elements_num = 0;
@ -280,7 +283,7 @@ impl EmptyVolume {
reference.borrow_mut().roughness_back= vec![];
}
// front face of the volume
// MARK: front face of the volume
let mut front_colors = vec![];
let mut front_roughness = vec![];
let mut front_elements_num = 0;
@ -307,7 +310,7 @@ impl EmptyVolume {
reference.borrow_mut().roughness_front= vec![];
}
// front face of the volume
// MARK: left face of the volume
let mut left_colors = vec![];
let mut left_roughness = vec![];
let mut left_elements_num = 0;
@ -334,7 +337,7 @@ impl EmptyVolume {
reference.borrow_mut().roughness_left= vec![];
}
// back face of the volume
// MARK: right face of the volume
let mut right_colors = vec![];
let mut right_roughness = vec![];
let mut right_elements_num = 0;
@ -370,6 +373,7 @@ impl EmptyVolume {
}
}
println!("add the neighbor linkage for all the volumes of the oct tree");
// MARK: Neighbor Linkage
for reference in volumes.iter_mut() {
let x_min_pos;
if reference.borrow().position.x == 0 {
@ -398,7 +402,7 @@ impl EmptyVolume {
let x_max_pos = reference.borrow().position.x + reference.borrow().size_x;
let y_max_pos = reference.borrow().position.y + reference.borrow().size_y;
let z_max_pos = reference.borrow().position.z + reference.borrow().size_z;
// bottom face of the volume
// MARK: bottom face of the volume
let mut bottom_neighbors = vec![];
let mut bottom_elements_num = 0;
if z_min_pos != 0 {
@ -420,7 +424,7 @@ impl EmptyVolume {
else {
reference.borrow_mut().neighbor_bottom = vec![None];
}
// top face of the volume
// MARK: top face of the volume
let mut top_neighbors = vec![];
let mut top_elements_num = 0;
for x in 0..reference.borrow().size_x {
@ -441,7 +445,7 @@ impl EmptyVolume {
reference.borrow_mut().neighbor_top = vec![None];
}
// back face of the volume
// MARK: back face of the volume
let mut back_neighbors = vec![];
let mut back_elements_num = 0;
for x in 0..reference.borrow().size_x {
@ -462,7 +466,7 @@ impl EmptyVolume {
reference.borrow_mut().neighbor_back = vec![None];
}
// front face of the volume
// MARK: front face of the volume
let mut front_neighbors = vec![];
let mut front_elements_num = 0;
if y_min_pos != 0{
@ -485,7 +489,7 @@ impl EmptyVolume {
reference.borrow_mut().neighbor_front = vec![None];
}
// left face of the volume
// MARK: left face of the volume
let mut left_neighbors = vec![];
let mut left_elements_num = 0;
if x_min_pos != 0 {
@ -508,7 +512,7 @@ impl EmptyVolume {
reference.borrow_mut().neighbor_left = vec![None];
}
// right face of the volume
// MARK: right face of the volume
let mut right_neighbors = vec![];
let mut right_elements_num = 0;
for y in 0..reference.borrow().size_y {
@ -532,7 +536,7 @@ impl EmptyVolume {
println!("volume creation took {} s", start_time.elapsed().as_millis() as f32 / 1000.0);
(volumes, neighbors)
}
// MARK: To Quads
pub fn to_quads(&self) -> Vec<Quad> {
let mut quads = vec![];
let float_pos = Vector3 {x: self.position.x as f32, y: self.position.y as f32, z: self.position.z as f32};
@ -686,10 +690,12 @@ impl EmptyVolume {
}
quads
}
pub fn get_buffer_mem_size(&self) -> u32 {
// MARK: Get Buffer Mem Size
pub fn get_buffer_mem_size(&self, light_number: u32) -> u32 {
let mut mem_size: u32 = 0;
mem_size += 3; //pos
mem_size += 3; //max sizes
mem_size += light_number; // light references
mem_size += 12; //color/roughness buffer sizes, 2 values each
mem_size += 12; //neighbor buffer sizes, 2 values each
@ -710,9 +716,16 @@ impl EmptyVolume {
mem_size
}
pub fn insert_into_memory(&self, mut v: Vec<u32>) -> Vec<u32> {
// MARK: insert into Memory
pub fn insert_into_memory(&self, mut v: Vec<u32>, light_number: u32, lights: &Vec<PointLight>) -> Vec<u32> {
let mut mem_index = self.memory_start;
//pos
v[mem_index] = self.position.x as u32;
mem_index += 1;
v[mem_index] = self.position.y as u32;
mem_index += 1;
v[mem_index] = self.position.y as u32;
mem_index += 1;
//max sizes
v[mem_index] = self.size_x as u32;
mem_index += 1;
@ -720,6 +733,12 @@ impl EmptyVolume {
mem_index += 1;
v[mem_index] = self.size_z as u32;
mem_index += 1;
//Todo: insert lights
let selected_lights = self.select_lights(lights, light_number);
for light in selected_lights {
v[mem_index] = light;
mem_index += 1;
}
//color/roughness buffer sizes, 2 values each
if self.color_top.len() > 0 {
v[mem_index] = self.size_x as u32;
@ -1014,4 +1033,26 @@ impl EmptyVolume {
println!("last memory index of volume was {}, equivalent to {}kB", mem_index, mem_index * 32 / 8 / 1024);
v
}
pub fn select_lights(&self, lights: &Vec<PointLight>, light_number: u32) -> Vec<u32> {
let center = self.position + Vector3{x: self.size_x / 2, y: self.size_y / 2, z: self.size_z / 2};
let mut weighted_indices = vec![];
for light in lights {
let weight = light.weighted_distance(center);
weighted_indices.push((weight, light.memory_start));
}
weighted_indices.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap());
let mut out_index = vec![];
for index in 0..weighted_indices.len() {
out_index.push(weighted_indices[weighted_indices.len() - (index + 1)].1 as u32);
if out_index.len() == light_number as usize {
break;
}
}
while out_index.len() < light_number as usize {
out_index.push(0);
}
out_index
}
}

34
src/scene/light.rs Normal file
View file

@ -0,0 +1,34 @@
use cgmath::{InnerSpace, MetricSpace, Vector3};
use crate::vertex;
#[derive(Clone, Debug, PartialEq)]
pub struct PointLight{
pub pos: vertex::Vec3,
pub color: vertex::Vec3,
pub memory_start: usize,
}
impl PointLight {
pub fn get_buffer_mem_size(&self) -> u32 {
4 * 3 + 4 * 3
}
pub fn insert_into_memory(&self, mut v: Vec<u32>) -> Vec<u32> {
v[self.memory_start] = self.pos.x as u32;
v[self.memory_start + 1] = self.pos.y as u32;
v[self.memory_start + 2] = self.pos.z as u32;
v[self.memory_start + 3] = self.color.x as u32;
v[self.memory_start + 4] = self.color.y as u32;
v[self.memory_start + 5] = self.color.z as u32;
v
}
pub fn weighted_distance(&self, center: Vector3<usize>) -> f32 {
let distance = self.pos.distance(vertex::Vec3{x: center.x as f32, y: center.y as f32, z: center.z as f32});
let light_intensity = self.color.magnitude();
light_intensity / distance.powf(2.0)
}
}

View file

@ -1,5 +1,6 @@
mod oct_tree;
mod empty_volume;
mod light;
use anyhow::Ok;
use vulkanalia::prelude::v1_0::*;
@ -10,6 +11,7 @@ use cgmath::{vec2, vec3};
use std::cell::RefCell;
use std::rc::Rc;
use crate::app_data;
use crate::app_data::AppData;
use crate::buffer;
use crate::vertex;
@ -17,6 +19,7 @@ use crate::primitives::cube::Cube;
use crate::primitives::drawable::Drawable;
use crate::scene::oct_tree::{OctTree, OctTreeIter, CHUNK_SIZE};
use crate::scene::empty_volume::EmptyVolume;
use crate::scene::light::PointLight;
extern crate rand;
use rand::Rng;
@ -50,6 +53,8 @@ pub struct Scene {
pub index_buffer_memory_quad: vk::DeviceMemory,
pub rt_memory: Vec<u32>,
pub point_lights: Vec<PointLight>,
}
impl Scene {
@ -82,6 +87,8 @@ impl Scene {
oct_tree.set_cube(cube.clone());
self.point_lights.push(PointLight { pos: vec3(11.0, 11.0, 11.0), color: vec3(1.0, 1.0, 1.0), memory_start: 0 });
let mut empty_volumes: Vec<Rc<RefCell<EmptyVolume>>>;
(empty_volumes, _) = EmptyVolume::from_oct_tree(&oct_tree);
println!("number of empty volumes is {}", empty_volumes.len());
@ -112,9 +119,14 @@ impl Scene {
}
let mut memory_index = 1; // zero should be the location for the overall length (also will be the invalid memory allocation for pointing to a nonexistant neighbor)
for light in &mut self.point_lights {
light.memory_start = memory_index;
memory_index += light.get_buffer_mem_size() as usize;
}
for volume in &empty_volumes {
volume.borrow_mut().memory_start = memory_index;
memory_index += volume.borrow().get_buffer_mem_size() as usize;
memory_index += volume.borrow().get_buffer_mem_size(data.num_lights_per_volume) as usize;
}
for volume in &empty_volumes {
@ -124,18 +136,15 @@ impl Scene {
}
}
println!("Memory size is {} kB, max indes is {}", memory_index * 32 / 8 /1024 + 1, memory_index);
let mut volume_vec = vec![memory_index as u32; memory_index];
let mut volume_vec = vec![data.num_lights_per_volume; memory_index];
for volume in &empty_volumes {
volume_vec = volume.borrow().insert_into_memory(volume_vec);
volume_vec = volume.borrow().insert_into_memory(volume_vec, data.num_lights_per_volume, &self.point_lights);
}
for light in &self.point_lights {
volume_vec = light.insert_into_memory(volume_vec);
}
println!("volume_vec print {:?}", volume_vec);
let mut empty_count = 0;
for element in &volume_vec {
if *element == memory_index as u32 {
empty_count += 1;
}
}
println!("empty elements count is {}", empty_count);
self.rt_memory = volume_vec;
data.scene_rt_memory_size = (self.rt_memory.len() * 4) as u64; // size of the needed buffer size in bytes